Get bar oriented RSI working correctly
parent
268e748417
commit
3f0e175011
|
@ -1,10 +1,13 @@
|
|||
"""
|
||||
Momentum bby.
|
||||
"""
|
||||
from typing import AsyncIterator
|
||||
from typing import AsyncIterator, Optional
|
||||
|
||||
import numpy as np
|
||||
from numba import jit, float64, optional
|
||||
from ringbuf import RingBuffer
|
||||
from numba import jit, float64, optional, int64
|
||||
|
||||
from ..data._normalize import iterticks
|
||||
|
||||
|
||||
# TODO: things to figure the fuck out:
|
||||
|
@ -47,6 +50,9 @@ def ema(
|
|||
s[0] = y[0]; t = 0
|
||||
s[t] = a*y[t] + (1-a)*s[t-1], t > 0.
|
||||
}
|
||||
|
||||
More discussion here:
|
||||
https://stackoverflow.com/questions/42869495/numpy-version-of-exponential-weighted-moving-average-equivalent-to-pandas-ewm
|
||||
"""
|
||||
n = y.shape[0]
|
||||
|
||||
|
@ -67,6 +73,7 @@ def ema(
|
|||
else:
|
||||
s[0] = ylast
|
||||
|
||||
print(s)
|
||||
for i in range(1, n):
|
||||
s[i] = y[i] * alpha + s[i-1] * (1 - alpha)
|
||||
|
||||
|
@ -77,34 +84,40 @@ def ema(
|
|||
# float64[:](
|
||||
# float64[:],
|
||||
# int64,
|
||||
# float64,
|
||||
# float64,
|
||||
# ),
|
||||
# # nopython=True,
|
||||
# nopython=True,
|
||||
# nogil=True
|
||||
# )
|
||||
def rsi(
|
||||
signal: 'np.ndarray[float64]',
|
||||
period: int = 14,
|
||||
period: int64 = 14,
|
||||
up_ema_last: float64 = None,
|
||||
down_ema_last: float64 = None,
|
||||
) -> 'np.ndarray[float64]':
|
||||
alpha = 1/period
|
||||
# print(signal)
|
||||
|
||||
df = np.diff(signal)
|
||||
up, down = np.where(df > 0, df, 0), np.where(df < 0, -df, 0)
|
||||
|
||||
up = np.where(df > 0, df, 0)
|
||||
up_ema = ema(up, alpha, up_ema_last)
|
||||
|
||||
down = np.where(df < 0, -df, 0)
|
||||
down_ema = ema(down, alpha, down_ema_last)
|
||||
|
||||
# avoid dbz errors
|
||||
rs = np.divide(
|
||||
up_ema,
|
||||
down_ema,
|
||||
out=np.zeros_like(up_ema),
|
||||
where=down_ema!=0
|
||||
where=down_ema != 0
|
||||
)
|
||||
# print(f'up_ema: {up_ema}\ndown_ema: {down_ema}')
|
||||
# print(f'rs: {rs}')
|
||||
|
||||
# map rs through sigmoid (with range [0, 100])
|
||||
rsi = 100 - 100 / (1 + rs)
|
||||
# rsi = 100 * (up_ema / (up_ema + down_ema))
|
||||
|
||||
# also return the last ema state for next iteration
|
||||
return rsi, up_ema[-1], down_ema[-1]
|
||||
|
||||
|
@ -114,67 +127,96 @@ def rsi(
|
|||
# )
|
||||
async def _rsi(
|
||||
source: 'QuoteStream[Dict[str, Any]]', # noqa
|
||||
ohlcv: np.ndarray,
|
||||
ohlcv: "ShmArray[T<'close'>]",
|
||||
period: int = 14,
|
||||
) -> AsyncIterator[np.ndarray]:
|
||||
"""Multi-timeframe streaming RSI.
|
||||
|
||||
https://en.wikipedia.org/wiki/Relative_strength_index
|
||||
"""
|
||||
sig = ohlcv['close']
|
||||
sig = ohlcv.array['close']
|
||||
|
||||
# TODO: the emas here should be seeded with a period SMA as per
|
||||
# wilder's original formula..
|
||||
rsi_h, up_ema_last, down_ema_last = rsi(sig, period, None, None)
|
||||
rsi_h, last_up_ema_close, last_down_ema_close = rsi(sig, period, None, None)
|
||||
|
||||
# deliver history
|
||||
yield rsi_h
|
||||
|
||||
_last = sig[-1]
|
||||
index = ohlcv.index
|
||||
|
||||
async for quote in source:
|
||||
# tick based updates
|
||||
for tick in quote.get('ticks', ()):
|
||||
if tick.get('type') == 'trade':
|
||||
curr = tick['price']
|
||||
last = np.array([_last, curr])
|
||||
# await tractor.breakpoint()
|
||||
rsi_out, up_ema_last, down_ema_last = rsi(
|
||||
last,
|
||||
period=period,
|
||||
up_ema_last=up_ema_last,
|
||||
down_ema_last=down_ema_last,
|
||||
)
|
||||
_last = curr
|
||||
# print(f'last: {last}\n rsi: {rsi_out}')
|
||||
yield rsi_out[-1]
|
||||
for tick in iterticks(quote):
|
||||
# though incorrect below is interesting
|
||||
# sig = ohlcv.last(period)['close']
|
||||
sig = ohlcv.last(2)['close']
|
||||
|
||||
# the ema needs to be computed from the "last bar"
|
||||
if ohlcv.index > index:
|
||||
last_up_ema_close = up_ema_last
|
||||
last_down_ema_close = down_ema_last
|
||||
index = ohlcv.index
|
||||
|
||||
rsi_out, up_ema_last, down_ema_last = rsi(
|
||||
sig,
|
||||
period=period,
|
||||
up_ema_last=last_up_ema_close,
|
||||
down_ema_last=last_down_ema_close,
|
||||
)
|
||||
print(f'rsi_out: {rsi_out}')
|
||||
yield rsi_out[-1:]
|
||||
|
||||
def wma(
|
||||
signal: np.ndarray,
|
||||
) -> np.ndarray:
|
||||
if weights is None:
|
||||
# default is a standard arithmetic mean
|
||||
seq = np.full((length,), 1)
|
||||
weights = seq / seq.sum()
|
||||
|
||||
assert length == len(weights)
|
||||
|
||||
|
||||
async def wma(
|
||||
source, #: AsyncStream[np.ndarray],
|
||||
length: int,
|
||||
ohlcv: np.ndarray, # price time-frame "aware"
|
||||
lookback: np.ndarray, # price time-frame "aware"
|
||||
weights: np.ndarray,
|
||||
) -> AsyncIterator[np.ndarray]: # i like FinSigStream
|
||||
"""Weighted moving average.
|
||||
weights: Optional[np.ndarray] = None,
|
||||
) -> AsyncIterator[np.ndarray]: # maybe something like like FspStream?
|
||||
"""Streaming weighted moving average.
|
||||
|
||||
``weights`` is a sequence of already scaled values. As an example
|
||||
for the WMA often found in "techincal analysis":
|
||||
``weights = np.arange(1, N) * N*(N-1)/2``.
|
||||
"""
|
||||
length = len(weights)
|
||||
_lookback = np.zeros(length - 1)
|
||||
# deliver historical output as "first yield"
|
||||
yield np.convolve(ohlcv.array['close'], weights, 'valid')
|
||||
|
||||
ohlcv.from_tf('5m')
|
||||
# begin real-time section
|
||||
|
||||
# async for frame_len, frame in source:
|
||||
async for frame in source:
|
||||
wma = np.convolve(
|
||||
ohlcv[-length:]['close'],
|
||||
# np.concatenate((_lookback, frame)),
|
||||
weights,
|
||||
'valid'
|
||||
)
|
||||
# todo: handle case where frame_len < length - 1
|
||||
_lookback = frame[-(length-1):] # noqa
|
||||
yield wma
|
||||
# fill length samples as lookback history
|
||||
# ringbuf = RingBuffer(format='f', capacity=2*length)
|
||||
# overflow = ringbuf.push(ohlcv['close'][-length + 1:])
|
||||
# assert overflow is None
|
||||
|
||||
# lookback = np.zeros((length,))
|
||||
# lookback[:-1] = ohlcv['close'][-length + 1:]
|
||||
|
||||
# async for frame in atleast(length, source):
|
||||
async for quote in source:
|
||||
for tick in iterticks(quote, type='trade'):
|
||||
# writes no matter what
|
||||
overflow = ringbuf.push(np.array([tick['price']]))
|
||||
assert overflow is None
|
||||
|
||||
# history = np.concatenate(ringbuf.pop(length - 1), frame)
|
||||
|
||||
sig = ohlcv.last(length)
|
||||
history = ringbuf.pop(ringbuf.read_available)
|
||||
yield np.convolve(history, weights, 'valid')
|
||||
|
||||
# push back `length-1` datums as lookback in preparation
|
||||
# for next minimum 1 datum arrival which will require
|
||||
# another "window's worth" of history.
|
||||
ringbuf.push(history[-length + 1:])
|
||||
|
|
Loading…
Reference in New Issue