Use shm in fsp cascading
This kicks off what will be the beginning of hopefully a very nice (soft) real-time financial signal processing system. We're keeping the hack to "time align" curves (for now) with the bars for now by slapping in an extra datum at index 0.bar_select
parent
4383579cd0
commit
2fcbefa6e1
|
@ -1,13 +1,16 @@
|
||||||
"""
|
"""
|
||||||
Financial signal processing for the peeps.
|
Financial signal processing for the peeps.
|
||||||
"""
|
"""
|
||||||
from typing import AsyncIterator, Callable
|
from typing import AsyncIterator, Callable, Tuple
|
||||||
|
|
||||||
|
import trio
|
||||||
|
import tractor
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from ..log import get_logger
|
from ..log import get_logger
|
||||||
from .. import data
|
from .. import data
|
||||||
from ._momo import _rsi
|
from ._momo import _rsi
|
||||||
|
from ..data import attach_shm_array, Feed
|
||||||
|
|
||||||
log = get_logger(__name__)
|
log = get_logger(__name__)
|
||||||
|
|
||||||
|
@ -19,7 +22,7 @@ async def latency(
|
||||||
source: 'TickStream[Dict[str, float]]', # noqa
|
source: 'TickStream[Dict[str, float]]', # noqa
|
||||||
ohlcv: np.ndarray
|
ohlcv: np.ndarray
|
||||||
) -> AsyncIterator[np.ndarray]:
|
) -> AsyncIterator[np.ndarray]:
|
||||||
"""Compute High-Low midpoint value.
|
"""Latency measurements, broker to piker.
|
||||||
"""
|
"""
|
||||||
# TODO: do we want to offer yielding this async
|
# TODO: do we want to offer yielding this async
|
||||||
# before the rt data connection comes up?
|
# before the rt data connection comes up?
|
||||||
|
@ -37,33 +40,40 @@ async def latency(
|
||||||
yield value
|
yield value
|
||||||
|
|
||||||
|
|
||||||
async def stream_and_process(
|
async def increment_signals(
|
||||||
bars: np.ndarray,
|
feed: Feed,
|
||||||
|
dst_shm: 'SharedArray', # noqa
|
||||||
|
) -> None:
|
||||||
|
async for msg in await feed.index_stream():
|
||||||
|
array = dst_shm.array
|
||||||
|
last = array[-1:].copy()
|
||||||
|
|
||||||
|
# write new slot to the buffer
|
||||||
|
dst_shm.push(last)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@tractor.stream
|
||||||
|
async def cascade(
|
||||||
|
ctx: tractor.Context,
|
||||||
brokername: str,
|
brokername: str,
|
||||||
# symbols: List[str],
|
src_shm_token: dict,
|
||||||
|
dst_shm_token: Tuple[str, np.dtype],
|
||||||
symbol: str,
|
symbol: str,
|
||||||
fsp_func_name: str,
|
fsp_func_name: str,
|
||||||
) -> AsyncIterator[dict]:
|
) -> AsyncIterator[dict]:
|
||||||
|
"""Chain streaming signal processors and deliver output to
|
||||||
|
destination mem buf.
|
||||||
|
"""
|
||||||
|
src = attach_shm_array(token=src_shm_token)
|
||||||
|
dst = attach_shm_array(readonly=False, token=dst_shm_token)
|
||||||
|
|
||||||
# remember, msgpack-numpy's ``from_buffer` returns read-only array
|
|
||||||
# bars = np.array(bars[list(ohlc_dtype.names)])
|
|
||||||
|
|
||||||
# async def _yield_bars():
|
|
||||||
# yield bars
|
|
||||||
|
|
||||||
# hist_out: np.ndarray = None
|
|
||||||
|
|
||||||
# Conduct a single iteration of fsp with historical bars input
|
|
||||||
# async for hist_out in func(_yield_bars(), bars):
|
|
||||||
# yield {symbol: hist_out}
|
|
||||||
func: Callable = _fsps[fsp_func_name]
|
func: Callable = _fsps[fsp_func_name]
|
||||||
|
|
||||||
# open a data feed stream with requested broker
|
# open a data feed stream with requested broker
|
||||||
async with data.open_feed(
|
async with data.open_feed(brokername, [symbol]) as feed:
|
||||||
brokername,
|
|
||||||
[symbol],
|
|
||||||
) as (fquote, stream):
|
|
||||||
|
|
||||||
|
assert src.token == feed.shm.token
|
||||||
# TODO: load appropriate fsp with input args
|
# TODO: load appropriate fsp with input args
|
||||||
|
|
||||||
async def filter_by_sym(sym, stream):
|
async def filter_by_sym(sym, stream):
|
||||||
|
@ -72,9 +82,37 @@ async def stream_and_process(
|
||||||
if symbol == sym:
|
if symbol == sym:
|
||||||
yield quotes
|
yield quotes
|
||||||
|
|
||||||
async for processed in func(
|
out_stream = func(
|
||||||
filter_by_sym(symbol, stream),
|
filter_by_sym(symbol, feed.stream),
|
||||||
bars,
|
feed.shm,
|
||||||
):
|
)
|
||||||
|
|
||||||
|
# Conduct a single iteration of fsp with historical bars input
|
||||||
|
# and get historical output
|
||||||
|
history = await out_stream.__anext__()
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: talk to ``pyqtgraph`` core about proper way to solve this:
|
||||||
|
# XXX: hack to get curves aligned with bars graphics: prepend
|
||||||
|
# a copy of the first datum..
|
||||||
|
dst.push(history[:1])
|
||||||
|
|
||||||
|
# check for data length mis-allignment and fill missing values
|
||||||
|
diff = len(src.array) - len(history)
|
||||||
|
if diff >= 0:
|
||||||
|
for _ in range(diff):
|
||||||
|
dst.push(history[:1])
|
||||||
|
|
||||||
|
# compare with source signal and time align
|
||||||
|
index = dst.push(history)
|
||||||
|
|
||||||
|
yield index
|
||||||
|
|
||||||
|
async with trio.open_nursery() as n:
|
||||||
|
n.start_soon(increment_signals, feed, dst)
|
||||||
|
|
||||||
|
async for processed in out_stream:
|
||||||
log.info(f"{fsp_func_name}: {processed}")
|
log.info(f"{fsp_func_name}: {processed}")
|
||||||
yield processed
|
index = src.index
|
||||||
|
dst.array[-1][fsp_func_name] = processed
|
||||||
|
await ctx.send_yield(index)
|
||||||
|
|
Loading…
Reference in New Issue