Generalize time-gap detector to accept unit and threshold

basic_buy_bot
Tyler Goodlet 2023-06-08 10:22:53 -04:00
parent 0dcfcea6ee
commit 2dbcecdac7
1 changed files with 43 additions and 5 deletions

View File

@ -54,6 +54,9 @@ from contextlib import asynccontextmanager as acm
from datetime import datetime
from pathlib import Path
import time
from typing import (
Literal,
)
# from bidict import bidict
# import tractor
@ -388,15 +391,38 @@ def with_dts(
pl.from_epoch(pl.col(time_col)).alias('dt'),
]).with_columns([
pl.from_epoch(pl.col(f'{time_col}_prev')).alias('dt_prev'),
]).with_columns(
(pl.col('dt') - pl.col('dt_prev')).alias('dt_diff'),
)
pl.col('dt').diff().alias('dt_diff'),
]) #.with_columns(
# pl.col('dt').diff().dt.days().alias('days_dt_diff'),
# )
t_unit: Literal[
'days',
'hours',
'minutes',
'seconds',
'miliseconds',
'microseconds',
'nanoseconds',
]
def detect_time_gaps(
df: pl.DataFrame,
expect_period: float = 60,
time_col: str = 'time',
# epoch sampling step diff
expect_period: float = 60,
# datetime diff unit and gap value
# crypto mkts
# gap_dt_unit: t_unit = 'minutes',
# gap_thresh: int = 1,
# legacy stock mkts
gap_dt_unit: t_unit = 'days',
gap_thresh: int = 2,
) -> pl.DataFrame:
'''
@ -406,7 +432,19 @@ def detect_time_gaps(
actual missing data segments.
'''
return with_dts(df).filter(pl.col('s_diff') > expect_period)
dt_gap_col: str = f'{gap_dt_unit}_diff'
return with_dts(
df
).filter(
pl.col('s_diff').abs() > expect_period
).with_columns(
getattr(
pl.col('dt_diff').dt,
gap_dt_unit, # NOTE: must be valid ``Expr.dt.<name>``
)().alias(dt_gap_col)
).filter(
pl.col(dt_gap_col).abs() > gap_thresh
)
def detect_price_gaps(