Use uniform step arithmetic in `slice_from_time()`
If we presume that time indexing using a uniform step we can calculate the exact index (using `//`) for the input time presuming the data set has zero gaps. This gives a massive speedup over `numpy` fancy indexing and (naive) `numba` iteration. Further in the case where time gaps are detected, we can use `numpy.searchsorted()` to binary search for the nearest expected index at lower latency. Deatz, - comment-disable the call to the naive `numba` scan impl. - add a optional `step: int` input (calced if not provided). - add todos for caching binary search results in the gap detection cases. - drop returning the "absolute buffer indexing" slice since the caller can always just use the read-relative slice to acquire it.multichartz_backup
parent
097f16f158
commit
1a45aa96c9
|
@ -29,6 +29,7 @@ from numba import (
|
||||||
|
|
||||||
# TODO: for ``numba`` typing..
|
# TODO: for ``numba`` typing..
|
||||||
# from ._source import numba_ohlc_dtype
|
# from ._source import numba_ohlc_dtype
|
||||||
|
from ._sharedmem import ShmArray
|
||||||
from ._m4 import ds_m4
|
from ._m4 import ds_m4
|
||||||
from .._profile import (
|
from .._profile import (
|
||||||
Profiler,
|
Profiler,
|
||||||
|
@ -126,6 +127,7 @@ def path_arrays_from_ohlc(
|
||||||
high = q['high']
|
high = q['high']
|
||||||
low = q['low']
|
low = q['low']
|
||||||
close = q['close']
|
close = q['close']
|
||||||
|
# index = float64(q['index'])
|
||||||
index = float64(q['time'])
|
index = float64(q['time'])
|
||||||
|
|
||||||
# XXX: ``numba`` issue: https://github.com/numba/numba/issues/8622
|
# XXX: ``numba`` issue: https://github.com/numba/numba/issues/8622
|
||||||
|
@ -276,11 +278,7 @@ def _slice_from_time(
|
||||||
start_t: float,
|
start_t: float,
|
||||||
stop_t: float,
|
stop_t: float,
|
||||||
|
|
||||||
) -> tuple[
|
) -> tuple[int, int]:
|
||||||
tuple[int, int],
|
|
||||||
tuple[int, int],
|
|
||||||
np.ndarray | None,
|
|
||||||
]:
|
|
||||||
'''
|
'''
|
||||||
Slice an input struct array to a time range and return the absolute
|
Slice an input struct array to a time range and return the absolute
|
||||||
and "readable" slices for that array as well as the indexing mask
|
and "readable" slices for that array as well as the indexing mask
|
||||||
|
@ -305,14 +303,6 @@ def _slice_from_time(
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: if we can ensure each time field has a uniform
|
|
||||||
# step we can instead do some arithmetic to determine
|
|
||||||
# the equivalent index like we used to?
|
|
||||||
# return array[
|
|
||||||
# lbar - ifirst:
|
|
||||||
# (rbar - ifirst) + 1
|
|
||||||
# ]
|
|
||||||
|
|
||||||
read_i_0: int = 0
|
read_i_0: int = 0
|
||||||
read_i_last: int = 0
|
read_i_last: int = 0
|
||||||
|
|
||||||
|
@ -328,62 +318,159 @@ def _slice_from_time(
|
||||||
read_i_last = time
|
read_i_last = time
|
||||||
break
|
break
|
||||||
|
|
||||||
abs_i_0 = int(index[0]) + read_i_0
|
return read_i_0, read_i_last
|
||||||
abs_i_last = int(index[0]) + read_i_last
|
|
||||||
|
|
||||||
if read_i_last == 0:
|
|
||||||
read_i_last = times.shape[0]
|
|
||||||
|
|
||||||
abs_slc = (
|
|
||||||
int(abs_i_0),
|
|
||||||
int(abs_i_last),
|
|
||||||
)
|
|
||||||
|
|
||||||
read_slc = (
|
|
||||||
int(read_i_0),
|
|
||||||
int(read_i_last),
|
|
||||||
)
|
|
||||||
|
|
||||||
# also return the readable data from the timerange
|
|
||||||
return (
|
|
||||||
abs_slc,
|
|
||||||
read_slc,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def slice_from_time(
|
def slice_from_time(
|
||||||
arr: np.ndarray,
|
arr: np.ndarray,
|
||||||
start_t: float,
|
start_t: float,
|
||||||
stop_t: float,
|
stop_t: float,
|
||||||
|
step: int | None = None,
|
||||||
|
|
||||||
) -> tuple[
|
) -> tuple[
|
||||||
slice,
|
slice,
|
||||||
slice,
|
slice,
|
||||||
np.ndarray | None,
|
|
||||||
]:
|
]:
|
||||||
|
'''
|
||||||
|
Calculate array indices mapped from a time range and return them in
|
||||||
|
a slice.
|
||||||
|
|
||||||
|
Given an input array with an epoch `'time'` series entry, calculate
|
||||||
|
the indices which span the time range and return in a slice. Presume
|
||||||
|
each `'time'` step increment is uniform and when the time stamp
|
||||||
|
series contains gaps (the uniform presumption is untrue) use
|
||||||
|
``np.searchsorted()`` binary search to look up the appropriate
|
||||||
|
index.
|
||||||
|
|
||||||
|
'''
|
||||||
profiler = Profiler(
|
profiler = Profiler(
|
||||||
msg='slice_from_time()',
|
msg='slice_from_time()',
|
||||||
disabled=not pg_profile_enabled(),
|
disabled=not pg_profile_enabled(),
|
||||||
ms_threshold=ms_slower_then,
|
ms_threshold=ms_slower_then,
|
||||||
)
|
)
|
||||||
|
|
||||||
(
|
times = arr['time']
|
||||||
abs_slc_tuple,
|
t_first = round(times[0])
|
||||||
read_slc_tuple,
|
t_last = round(times[-1])
|
||||||
) = _slice_from_time(
|
|
||||||
arr,
|
index = arr['index']
|
||||||
start_t,
|
i_first = index[0]
|
||||||
stop_t,
|
read_i_max = arr.shape[0]
|
||||||
|
|
||||||
|
if (
|
||||||
|
start_t < t_first
|
||||||
|
and stop_t > t_last
|
||||||
|
):
|
||||||
|
read_i_start = 0
|
||||||
|
read_i_stop = read_i_max
|
||||||
|
read_slc = slice(
|
||||||
|
0,
|
||||||
|
read_i_max,
|
||||||
|
)
|
||||||
|
return read_slc
|
||||||
|
|
||||||
|
if step is None:
|
||||||
|
step = round(times[-1] - times[-2])
|
||||||
|
if step == 0:
|
||||||
|
# XXX: HOW TF is this happening?
|
||||||
|
step = 1
|
||||||
|
|
||||||
|
# compute (presumed) uniform-time-step index offsets
|
||||||
|
i_start_t = round(start_t)
|
||||||
|
read_i_start = (i_start_t - t_first) // step
|
||||||
|
|
||||||
|
i_stop_t = round(stop_t)
|
||||||
|
read_i_stop = (i_stop_t - t_first) // step
|
||||||
|
|
||||||
|
# always clip outputs to array support
|
||||||
|
# for read start:
|
||||||
|
# - never allow a start < the 0 index
|
||||||
|
# - never allow an end index > the read array len
|
||||||
|
read_i_start = min(
|
||||||
|
max(0, read_i_start),
|
||||||
|
read_i_max,
|
||||||
|
)
|
||||||
|
read_i_stop = max(
|
||||||
|
0,
|
||||||
|
min(read_i_stop, read_i_max),
|
||||||
|
)
|
||||||
|
|
||||||
|
# check for larger-then-latest calculated index for given start
|
||||||
|
# time, in which case we do a binary search for the correct index.
|
||||||
|
# NOTE: this is usually the result of a time series with time gaps
|
||||||
|
# where it is expected that each index step maps to a uniform step
|
||||||
|
# in the time stamp series.
|
||||||
|
i_iv_start = index[read_i_start - 1]
|
||||||
|
t_iv_start = times[read_i_start - 1]
|
||||||
|
if (
|
||||||
|
i_iv_start >= i_first
|
||||||
|
and t_iv_start > i_start_t
|
||||||
|
):
|
||||||
|
# do a binary search for the best index mapping to ``start_t``
|
||||||
|
# given we measured an overshoot using the uniform-time-step
|
||||||
|
# calculation from above.
|
||||||
|
|
||||||
|
# TODO: once we start caching these per source-array,
|
||||||
|
# we can just overwrite ``read_i_start`` directly.
|
||||||
|
new_read_i_start = np.searchsorted(
|
||||||
|
times,
|
||||||
|
i_start_t,
|
||||||
|
side='left',
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: minimize binary search work as much as possible:
|
||||||
|
# - cache these remap values which compensate for gaps in the
|
||||||
|
# uniform time step basis where we calc a later start
|
||||||
|
# index for the given input ``start_t``.
|
||||||
|
# - can we shorten the input search sequence by heuristic?
|
||||||
|
# up_to_arith_start = index[:read_i_start]
|
||||||
|
|
||||||
|
if (
|
||||||
|
new_read_i_start < read_i_start
|
||||||
|
):
|
||||||
|
# t_diff = t_iv_start - start_t
|
||||||
|
# print(
|
||||||
|
# f"WE'RE CUTTING OUT TIME - STEP:{step}\n"
|
||||||
|
# f'start_t:{start_t} -> 0index start_t:{t_iv_start}\n'
|
||||||
|
# f'diff: {t_diff}\n'
|
||||||
|
# f'REMAPPED START i: {read_i_start} -> {new_read_i_start}\n'
|
||||||
|
# )
|
||||||
|
read_i_start = new_read_i_start
|
||||||
|
|
||||||
|
# old much slower non-bin-search ``numba`` approach..
|
||||||
|
# (
|
||||||
|
# read_i_start,
|
||||||
|
# read_i_stop,
|
||||||
|
# ) = _slice_from_time(
|
||||||
|
# arr,
|
||||||
|
# start_t,
|
||||||
|
# stop_t,
|
||||||
|
# )
|
||||||
|
# abs_i_start = int(index[0]) + read_i_0
|
||||||
|
# abs_i_stop = int(index[0]) + read_i_last
|
||||||
|
# if read_i_stop == 0:
|
||||||
|
# read_i_stop = times.shape[0]
|
||||||
|
|
||||||
|
# read-relative indexes: gives a slice where `shm.array[read_slc]`
|
||||||
|
# will be the data spanning the input time range `start_t` ->
|
||||||
|
# `stop_t`
|
||||||
|
read_slc = slice(
|
||||||
|
int(read_i_start),
|
||||||
|
int(read_i_stop),
|
||||||
)
|
)
|
||||||
|
|
||||||
abs_slc = slice(*abs_slc_tuple)
|
|
||||||
read_slc = slice(*read_slc_tuple)
|
|
||||||
profiler(
|
profiler(
|
||||||
'slicing complete'
|
'slicing complete'
|
||||||
# f'{start_t} -> {abs_slc.start} | {read_slc.start}\n'
|
# f'{start_t} -> {abs_slc.start} | {read_slc.start}\n'
|
||||||
# f'{stop_t} -> {abs_slc.stop} | {read_slc.stop}\n'
|
# f'{stop_t} -> {abs_slc.stop} | {read_slc.stop}\n'
|
||||||
)
|
)
|
||||||
return (
|
|
||||||
abs_slc,
|
# NOTE: if caller needs absolute buffer indices they can
|
||||||
read_slc,
|
# slice the buffer abs index like so:
|
||||||
)
|
# abs_indx = index[read_slc]
|
||||||
|
# abs_slc = slice(
|
||||||
|
# int(abs_indx[0]),
|
||||||
|
# int(abs_indx[-1]),
|
||||||
|
# )
|
||||||
|
|
||||||
|
return read_slc
|
||||||
|
|
Loading…
Reference in New Issue