Merge pull request #236 from pikers/fsp_drunken_alignment
Fsp drunken alignmentteardown_guesmost_via_cs
commit
186d221dda
|
@ -246,7 +246,7 @@ async def sample_and_broadcast(
|
|||
if tick_throttle:
|
||||
# this is a send mem chan that likely
|
||||
# pushes to the ``uniform_rate_send()`` below.
|
||||
await stream.send(quote)
|
||||
await stream.send((sym, quote))
|
||||
|
||||
else:
|
||||
await stream.send({sym: quote})
|
||||
|
@ -285,10 +285,14 @@ async def uniform_rate_send(
|
|||
|
||||
sleep_period = 1/rate - 0.000616
|
||||
last_send = time.time()
|
||||
aname = stream._ctx.chan.uid[0]
|
||||
fsp = False
|
||||
if 'fsp' in aname:
|
||||
fsp = True
|
||||
|
||||
while True:
|
||||
|
||||
first_quote = await quote_stream.receive()
|
||||
sym, first_quote = await quote_stream.receive()
|
||||
start = time.time()
|
||||
|
||||
# append quotes since last iteration into the last quote's
|
||||
|
@ -301,7 +305,7 @@ async def uniform_rate_send(
|
|||
#
|
||||
while True:
|
||||
try:
|
||||
next_quote = quote_stream.receive_nowait()
|
||||
sym, next_quote = quote_stream.receive_nowait()
|
||||
ticks = next_quote.get('ticks')
|
||||
|
||||
if ticks:
|
||||
|
@ -312,12 +316,12 @@ async def uniform_rate_send(
|
|||
rate = 1 / (now - last_send)
|
||||
last_send = now
|
||||
|
||||
# print(f'{rate} Hz sending quotes') # \n{first_quote}')
|
||||
# log.info(f'{rate} Hz sending quotes') # \n{first_quote}')
|
||||
|
||||
# TODO: now if only we could sync this to the display
|
||||
# rate timing exactly lul
|
||||
try:
|
||||
await stream.send({first_quote['symbol']: first_quote})
|
||||
await stream.send({sym: first_quote})
|
||||
break
|
||||
except trio.ClosedResourceError:
|
||||
# if the feed consumer goes down then drop
|
||||
|
|
|
@ -31,7 +31,7 @@ import tractor
|
|||
import numpy as np
|
||||
|
||||
from ..log import get_logger
|
||||
from ._source import base_ohlc_dtype, base_iohlc_dtype
|
||||
from ._source import base_iohlc_dtype
|
||||
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
@ -168,6 +168,7 @@ class ShmArray:
|
|||
|
||||
self._len = len(shmarr)
|
||||
self._shm = shm
|
||||
self._post_init: bool = False
|
||||
|
||||
# pushing data does not write the index (aka primary key)
|
||||
self._write_fields = list(shmarr.dtype.fields.keys())[1:]
|
||||
|
@ -196,7 +197,24 @@ class ShmArray:
|
|||
|
||||
@property
|
||||
def array(self) -> np.ndarray:
|
||||
return self._array[self._first.value:self._last.value]
|
||||
'''Return an up-to-date ``np.ndarray`` view of the
|
||||
so-far-written data to the underlying shm buffer.
|
||||
|
||||
'''
|
||||
a = self._array[self._first.value:self._last.value]
|
||||
|
||||
# first, last = self._first.value, self._last.value
|
||||
# a = self._array[first:last]
|
||||
|
||||
# TODO: eventually comment this once we've not seen it in the
|
||||
# wild in a long time..
|
||||
# XXX: race where first/last indexes cause a reader
|
||||
# to load an empty array..
|
||||
if len(a) == 0 and self._post_init:
|
||||
raise RuntimeError('Empty array race condition hit!?')
|
||||
# breakpoint()
|
||||
|
||||
return a
|
||||
|
||||
def last(
|
||||
self,
|
||||
|
@ -209,6 +227,7 @@ class ShmArray:
|
|||
data: np.ndarray,
|
||||
|
||||
prepend: bool = False,
|
||||
start: Optional[int] = None,
|
||||
|
||||
) -> int:
|
||||
'''Ring buffer like "push" to append data
|
||||
|
@ -217,12 +236,18 @@ class ShmArray:
|
|||
NB: no actual ring logic yet to give a "loop around" on overflow
|
||||
condition, lel.
|
||||
'''
|
||||
self._post_init = True
|
||||
length = len(data)
|
||||
index = start or self._last.value
|
||||
|
||||
if prepend:
|
||||
index = self._first.value - length
|
||||
else:
|
||||
index = self._last.value
|
||||
|
||||
if index < 0:
|
||||
raise ValueError(
|
||||
f'Array size of {self._len} was overrun during prepend.\n'
|
||||
'You have passed {abs(index)} too many datums.'
|
||||
)
|
||||
|
||||
end = index + length
|
||||
|
||||
|
@ -230,11 +255,22 @@ class ShmArray:
|
|||
|
||||
try:
|
||||
self._array[fields][index:end] = data[fields][:]
|
||||
|
||||
# NOTE: there was a race here between updating
|
||||
# the first and last indices and when the next reader
|
||||
# tries to access ``.array`` (which due to the index
|
||||
# overlap will be empty). Pretty sure we've fixed it now
|
||||
# but leaving this here as a reminder.
|
||||
if prepend:
|
||||
assert index < self._first.value
|
||||
|
||||
if index < self._first.value:
|
||||
self._first.value = index
|
||||
else:
|
||||
self._last.value = end
|
||||
|
||||
return end
|
||||
|
||||
except ValueError as err:
|
||||
# shoudl raise if diff detected
|
||||
self.diff_err_fields(data)
|
||||
|
@ -290,20 +326,25 @@ class ShmArray:
|
|||
|
||||
|
||||
# how much is probably dependent on lifestyle
|
||||
_secs_in_day = int(60 * 60 * 12)
|
||||
_default_size = 2 * _secs_in_day
|
||||
_secs_in_day = int(60 * 60 * 24)
|
||||
# we try for 3 times but only on a run-every-other-day kinda week.
|
||||
_default_size = 3 * _secs_in_day
|
||||
|
||||
|
||||
def open_shm_array(
|
||||
|
||||
key: Optional[str] = None,
|
||||
size: int = _default_size,
|
||||
dtype: Optional[np.dtype] = None,
|
||||
readonly: bool = False,
|
||||
|
||||
) -> ShmArray:
|
||||
"""Open a memory shared ``numpy`` using the standard library.
|
||||
'''Open a memory shared ``numpy`` using the standard library.
|
||||
|
||||
This call unlinks (aka permanently destroys) the buffer on teardown
|
||||
and thus should be used from the parent-most accessor (process).
|
||||
"""
|
||||
|
||||
'''
|
||||
# create new shared mem segment for which we
|
||||
# have write permission
|
||||
a = np.zeros(size, dtype=dtype)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# piker: trading gear for hackers
|
||||
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of piker0)
|
||||
# Copyright (C) Tyler Goodlet (in stewardship of piker0)
|
||||
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
|
@ -14,33 +14,17 @@
|
|||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
"""
|
||||
Financial signal processing for the peeps.
|
||||
"""
|
||||
from functools import partial
|
||||
from typing import AsyncIterator, Callable, Tuple, Optional
|
||||
'''
|
||||
Fin-sig-proc for the peeps!
|
||||
|
||||
'''
|
||||
from typing import AsyncIterator
|
||||
|
||||
import trio
|
||||
from trio_typing import TaskStatus
|
||||
import tractor
|
||||
import numpy as np
|
||||
|
||||
from ..log import get_logger, get_console_log
|
||||
from .. import data
|
||||
from ._momo import _rsi, _wma
|
||||
from ._volume import _tina_vwap
|
||||
from ..data import attach_shm_array
|
||||
from ..data.feed import Feed
|
||||
from ..data._sharedmem import ShmArray
|
||||
from ._engine import cascade
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
||||
|
||||
_fsps = {
|
||||
'rsi': _rsi,
|
||||
'wma': _wma,
|
||||
'vwap': _tina_vwap,
|
||||
}
|
||||
__all__ = ['cascade']
|
||||
|
||||
|
||||
async def latency(
|
||||
|
@ -63,183 +47,3 @@ async def latency(
|
|||
# stack tracing.
|
||||
value = quote['brokerd_ts'] - quote['broker_ts']
|
||||
yield value
|
||||
|
||||
|
||||
async def fsp_compute(
|
||||
ctx: tractor.Context,
|
||||
symbol: str,
|
||||
feed: Feed,
|
||||
stream: trio.abc.ReceiveChannel,
|
||||
|
||||
src: ShmArray,
|
||||
dst: ShmArray,
|
||||
|
||||
fsp_func_name: str,
|
||||
func: Callable,
|
||||
|
||||
task_status: TaskStatus[None] = trio.TASK_STATUS_IGNORED,
|
||||
|
||||
) -> None:
|
||||
|
||||
# TODO: load appropriate fsp with input args
|
||||
|
||||
async def filter_by_sym(
|
||||
sym: str,
|
||||
stream,
|
||||
):
|
||||
|
||||
# TODO: make this the actualy first quote from feed
|
||||
# XXX: this allows for a single iteration to run for history
|
||||
# processing without waiting on the real-time feed for a new quote
|
||||
yield {}
|
||||
|
||||
# task cancellation won't kill the channel
|
||||
# since we shielded at the `open_feed()` call
|
||||
async for quotes in stream:
|
||||
for symbol, quotes in quotes.items():
|
||||
if symbol == sym:
|
||||
yield quotes
|
||||
|
||||
out_stream = func(
|
||||
filter_by_sym(symbol, stream),
|
||||
feed.shm,
|
||||
)
|
||||
|
||||
# TODO: XXX:
|
||||
# THERE'S A BIG BUG HERE WITH THE `index` field since we're
|
||||
# prepending a copy of the first value a few times to make
|
||||
# sub-curves align with the parent bar chart.
|
||||
# This likely needs to be fixed either by,
|
||||
# - manually assigning the index and historical data
|
||||
# seperately to the shm array (i.e. not using .push())
|
||||
# - developing some system on top of the shared mem array that
|
||||
# is `index` aware such that historical data can be indexed
|
||||
# relative to the true first datum? Not sure if this is sane
|
||||
# for incremental compuations.
|
||||
dst._first.value = src._first.value
|
||||
dst._last.value = src._first.value
|
||||
|
||||
# Conduct a single iteration of fsp with historical bars input
|
||||
# and get historical output
|
||||
history_output = await out_stream.__anext__()
|
||||
|
||||
# build a struct array which includes an 'index' field to push
|
||||
# as history
|
||||
history = np.array(
|
||||
np.arange(len(history_output)),
|
||||
dtype=dst.array.dtype
|
||||
)
|
||||
history[fsp_func_name] = history_output
|
||||
|
||||
# check for data length mis-allignment and fill missing values
|
||||
diff = len(src.array) - len(history)
|
||||
if diff >= 0:
|
||||
log.warning(f"WTF DIFF SIGNAL to HISTORY {diff}")
|
||||
for _ in range(diff):
|
||||
dst.push(history[:1])
|
||||
|
||||
# compare with source signal and time align
|
||||
index = dst.push(history)
|
||||
|
||||
await ctx.send_yield(index)
|
||||
|
||||
# setup a respawn handle
|
||||
with trio.CancelScope() as cs:
|
||||
task_status.started(cs)
|
||||
|
||||
# rt stream
|
||||
async for processed in out_stream:
|
||||
|
||||
# period = time.time() - last
|
||||
# hz = 1/period if period else float('nan')
|
||||
# if hz > 60:
|
||||
# log.info(f'FSP quote too fast: {hz}')
|
||||
|
||||
log.debug(f"{fsp_func_name}: {processed}")
|
||||
index = src.index
|
||||
dst.array[-1][fsp_func_name] = processed
|
||||
|
||||
# stream latest shm array index entry
|
||||
await ctx.send_yield(index)
|
||||
|
||||
|
||||
@tractor.stream
|
||||
async def cascade(
|
||||
ctx: tractor.Context,
|
||||
brokername: str,
|
||||
src_shm_token: dict,
|
||||
dst_shm_token: Tuple[str, np.dtype],
|
||||
symbol: str,
|
||||
fsp_func_name: str,
|
||||
loglevel: Optional[str] = None,
|
||||
|
||||
) -> None:
|
||||
'''Chain streaming signal processors and deliver output to
|
||||
destination mem buf.
|
||||
|
||||
'''
|
||||
if loglevel:
|
||||
get_console_log(loglevel)
|
||||
|
||||
src = attach_shm_array(token=src_shm_token)
|
||||
dst = attach_shm_array(readonly=False, token=dst_shm_token)
|
||||
|
||||
func: Callable = _fsps[fsp_func_name]
|
||||
|
||||
# open a data feed stream with requested broker
|
||||
async with data.feed.maybe_open_feed(
|
||||
brokername,
|
||||
[symbol],
|
||||
|
||||
# TODO:
|
||||
# tick_throttle=60,
|
||||
|
||||
) as (feed, stream):
|
||||
|
||||
assert src.token == feed.shm.token
|
||||
|
||||
last_len = new_len = len(src.array)
|
||||
|
||||
fsp_target = partial(
|
||||
fsp_compute,
|
||||
ctx=ctx,
|
||||
symbol=symbol,
|
||||
feed=feed,
|
||||
stream=stream,
|
||||
|
||||
src=src,
|
||||
dst=dst,
|
||||
|
||||
fsp_func_name=fsp_func_name,
|
||||
func=func
|
||||
)
|
||||
|
||||
async with trio.open_nursery() as n:
|
||||
|
||||
cs = await n.start(fsp_target)
|
||||
|
||||
# Increment the underlying shared memory buffer on every
|
||||
# "increment" msg received from the underlying data feed.
|
||||
|
||||
async with feed.index_stream() as stream:
|
||||
async for msg in stream:
|
||||
|
||||
new_len = len(src.array)
|
||||
|
||||
if new_len > last_len + 1:
|
||||
# respawn the signal compute task if the source
|
||||
# signal has been updated
|
||||
cs.cancel()
|
||||
cs = await n.start(fsp_target)
|
||||
|
||||
# TODO: adopt an incremental update engine/approach
|
||||
# where possible here eventually!
|
||||
|
||||
# read out last shm row
|
||||
array = dst.array
|
||||
last = array[-1:].copy()
|
||||
|
||||
# write new row to the shm buffer
|
||||
dst.push(last)
|
||||
|
||||
last_len = new_len
|
||||
|
|
|
@ -0,0 +1,342 @@
|
|||
# piker: trading gear for hackers
|
||||
# Copyright (C) Tyler Goodlet (in stewardship of piker0)
|
||||
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU Affero General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU Affero General Public License for more details.
|
||||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
'''
|
||||
core task logic for processing chains
|
||||
|
||||
'''
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import AsyncIterator, Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
import pyqtgraph as pg
|
||||
import trio
|
||||
from trio_typing import TaskStatus
|
||||
import tractor
|
||||
|
||||
from ..log import get_logger, get_console_log
|
||||
from .. import data
|
||||
from ..data import attach_shm_array
|
||||
from ..data.feed import Feed
|
||||
from ..data._sharedmem import ShmArray
|
||||
from ._momo import _rsi, _wma
|
||||
from ._volume import _tina_vwap
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
||||
_fsp_builtins = {
|
||||
'rsi': _rsi,
|
||||
'wma': _wma,
|
||||
'vwap': _tina_vwap,
|
||||
}
|
||||
|
||||
# TODO: things to figure the heck out:
|
||||
# - how to handle non-plottable values (pyqtgraph has facility for this
|
||||
# now in `arrayToQPath()`)
|
||||
# - composition of fsps / implicit chaining syntax (we need an issue)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TaskTracker:
|
||||
complete: trio.Event
|
||||
cs: trio.CancelScope
|
||||
|
||||
|
||||
async def filter_quotes_by_sym(
|
||||
|
||||
sym: str,
|
||||
quote_stream: tractor.MsgStream,
|
||||
|
||||
) -> AsyncIterator[dict]:
|
||||
'''
|
||||
Filter quote stream by target symbol.
|
||||
|
||||
'''
|
||||
# TODO: make this the actual first quote from feed
|
||||
# XXX: this allows for a single iteration to run for history
|
||||
# processing without waiting on the real-time feed for a new quote
|
||||
yield {}
|
||||
|
||||
async for quotes in quote_stream:
|
||||
quote = quotes.get(sym)
|
||||
if quote:
|
||||
yield quote
|
||||
|
||||
|
||||
async def fsp_compute(
|
||||
|
||||
stream: tractor.MsgStream,
|
||||
symbol: str,
|
||||
feed: Feed,
|
||||
quote_stream: trio.abc.ReceiveChannel,
|
||||
|
||||
src: ShmArray,
|
||||
dst: ShmArray,
|
||||
|
||||
func_name: str,
|
||||
func: Callable,
|
||||
|
||||
attach_stream: bool = False,
|
||||
task_status: TaskStatus[None] = trio.TASK_STATUS_IGNORED,
|
||||
|
||||
) -> None:
|
||||
|
||||
profiler = pg.debug.Profiler(
|
||||
delayed=False,
|
||||
disabled=True
|
||||
)
|
||||
|
||||
out_stream = func(
|
||||
|
||||
# TODO: do we even need this if we do the feed api right?
|
||||
# shouldn't a local stream do this before we get a handle
|
||||
# to the async iterable? it's that or we do some kinda
|
||||
# async itertools style?
|
||||
filter_quotes_by_sym(symbol, quote_stream),
|
||||
feed.shm,
|
||||
)
|
||||
|
||||
# Conduct a single iteration of fsp with historical bars input
|
||||
# and get historical output
|
||||
history_output = await out_stream.__anext__()
|
||||
|
||||
profiler(f'{func_name} generated history')
|
||||
|
||||
# build a struct array which includes an 'index' field to push
|
||||
# as history
|
||||
history = np.array(
|
||||
np.arange(len(history_output)),
|
||||
dtype=dst.array.dtype
|
||||
)
|
||||
history[func_name] = history_output
|
||||
|
||||
# TODO: XXX:
|
||||
# THERE'S A BIG BUG HERE WITH THE `index` field since we're
|
||||
# prepending a copy of the first value a few times to make
|
||||
# sub-curves align with the parent bar chart.
|
||||
# This likely needs to be fixed either by,
|
||||
# - manually assigning the index and historical data
|
||||
# seperately to the shm array (i.e. not using .push())
|
||||
# - developing some system on top of the shared mem array that
|
||||
# is `index` aware such that historical data can be indexed
|
||||
# relative to the true first datum? Not sure if this is sane
|
||||
# for incremental compuations.
|
||||
first = dst._first.value = src._first.value
|
||||
|
||||
# TODO: can we use this `start` flag instead of the manual
|
||||
# setting above?
|
||||
index = dst.push(history, start=first)
|
||||
|
||||
profiler(f'{func_name} pushed history')
|
||||
profiler.finish()
|
||||
|
||||
# setup a respawn handle
|
||||
with trio.CancelScope() as cs:
|
||||
tracker = TaskTracker(trio.Event(), cs)
|
||||
task_status.started((tracker, index))
|
||||
profiler(f'{func_name} yield last index')
|
||||
|
||||
# import time
|
||||
# last = time.time()
|
||||
|
||||
try:
|
||||
# rt stream
|
||||
async for processed in out_stream:
|
||||
|
||||
log.debug(f"{func_name}: {processed}")
|
||||
index = src.index
|
||||
dst.array[-1][func_name] = processed
|
||||
|
||||
# NOTE: for now we aren't streaming this to the consumer
|
||||
# stream latest array index entry which basically just acts
|
||||
# as trigger msg to tell the consumer to read from shm
|
||||
if attach_stream:
|
||||
await stream.send(index)
|
||||
|
||||
# period = time.time() - last
|
||||
# hz = 1/period if period else float('nan')
|
||||
# if hz > 60:
|
||||
# log.info(f'FSP quote too fast: {hz}')
|
||||
# last = time.time()
|
||||
finally:
|
||||
tracker.complete.set()
|
||||
|
||||
|
||||
@tractor.context
|
||||
async def cascade(
|
||||
|
||||
ctx: tractor.Context,
|
||||
brokername: str,
|
||||
|
||||
src_shm_token: dict,
|
||||
dst_shm_token: tuple[str, np.dtype],
|
||||
|
||||
symbol: str,
|
||||
func_name: str,
|
||||
zero_on_step: bool = False,
|
||||
|
||||
loglevel: Optional[str] = None,
|
||||
|
||||
) -> None:
|
||||
'''
|
||||
Chain streaming signal processors and deliver output to
|
||||
destination shm array buffer.
|
||||
|
||||
'''
|
||||
profiler = pg.debug.Profiler(delayed=False, disabled=False)
|
||||
|
||||
if loglevel:
|
||||
get_console_log(loglevel)
|
||||
|
||||
src = attach_shm_array(token=src_shm_token)
|
||||
dst = attach_shm_array(readonly=False, token=dst_shm_token)
|
||||
|
||||
func: Callable = _fsp_builtins.get(func_name)
|
||||
if not func:
|
||||
# TODO: assume it's a func target path
|
||||
raise ValueError('Unknown fsp target: {func_name}')
|
||||
|
||||
# open a data feed stream with requested broker
|
||||
async with data.feed.maybe_open_feed(
|
||||
brokername,
|
||||
[symbol],
|
||||
|
||||
# TODO throttle tick outputs from *this* daemon since
|
||||
# it'll emit tons of ticks due to the throttle only
|
||||
# limits quote arrival periods, so the consumer of *this*
|
||||
# needs to get throttled the ticks we generate.
|
||||
# tick_throttle=60,
|
||||
|
||||
) as (feed, quote_stream):
|
||||
|
||||
profiler(f'{func_name}: feed up')
|
||||
|
||||
assert src.token == feed.shm.token
|
||||
# last_len = new_len = len(src.array)
|
||||
|
||||
async with (
|
||||
ctx.open_stream() as stream,
|
||||
trio.open_nursery() as n,
|
||||
):
|
||||
|
||||
fsp_target = partial(
|
||||
|
||||
fsp_compute,
|
||||
stream=stream,
|
||||
symbol=symbol,
|
||||
feed=feed,
|
||||
quote_stream=quote_stream,
|
||||
|
||||
# shm
|
||||
src=src,
|
||||
dst=dst,
|
||||
|
||||
func_name=func_name,
|
||||
func=func
|
||||
)
|
||||
|
||||
tracker, index = await n.start(fsp_target)
|
||||
|
||||
if zero_on_step:
|
||||
last = dst.array[-1:]
|
||||
zeroed = np.zeros(last.shape, dtype=last.dtype)
|
||||
|
||||
await ctx.started(index)
|
||||
profiler(f'{func_name}: fsp up')
|
||||
|
||||
async def resync(tracker: TaskTracker) -> tuple[TaskTracker, int]:
|
||||
# TODO: adopt an incremental update engine/approach
|
||||
# where possible here eventually!
|
||||
log.warning(f're-syncing fsp {func_name} to source')
|
||||
tracker.cs.cancel()
|
||||
await tracker.complete.wait()
|
||||
return await n.start(fsp_target)
|
||||
|
||||
def is_synced(
|
||||
src: ShmArray,
|
||||
dst: ShmArray
|
||||
) -> tuple[bool, int, int]:
|
||||
'''Predicate to dertmine if a destination FSP
|
||||
output array is aligned to its source array.
|
||||
|
||||
'''
|
||||
step_diff = src.index - dst.index
|
||||
len_diff = abs(len(src.array) - len(dst.array))
|
||||
return not (
|
||||
# the source is likely backfilling and we must
|
||||
# sync history calculations
|
||||
len_diff > 2 or
|
||||
|
||||
# we aren't step synced to the source and may be
|
||||
# leading/lagging by a step
|
||||
step_diff > 1 or
|
||||
step_diff < 0
|
||||
), step_diff, len_diff
|
||||
|
||||
async def poll_and_sync_to_step(
|
||||
|
||||
tracker: TaskTracker,
|
||||
src: ShmArray,
|
||||
dst: ShmArray,
|
||||
|
||||
) -> tuple[TaskTracker, int]:
|
||||
|
||||
synced, step_diff, _ = is_synced(src, dst)
|
||||
while not synced:
|
||||
tracker, index = await resync(tracker)
|
||||
synced, step_diff, _ = is_synced(src, dst)
|
||||
|
||||
return tracker, step_diff
|
||||
|
||||
s, step, ld = is_synced(src, dst)
|
||||
|
||||
# Increment the underlying shared memory buffer on every
|
||||
# "increment" msg received from the underlying data feed.
|
||||
async with feed.index_stream() as stream:
|
||||
|
||||
profiler(f'{func_name}: sample stream up')
|
||||
profiler.finish()
|
||||
|
||||
async for msg in stream:
|
||||
|
||||
# respawn the compute task if the source
|
||||
# array has been updated such that we compute
|
||||
# new history from the (prepended) source.
|
||||
synced, step_diff, _ = is_synced(src, dst)
|
||||
if not synced:
|
||||
tracker, step_diff = await poll_and_sync_to_step(
|
||||
tracker,
|
||||
src,
|
||||
dst,
|
||||
)
|
||||
|
||||
# skip adding a last bar since we should already
|
||||
# be step alinged
|
||||
if step_diff == 0:
|
||||
continue
|
||||
|
||||
# read out last shm row, copy and write new row
|
||||
array = dst.array
|
||||
|
||||
# some metrics like vlm should be reset
|
||||
# to zero every step.
|
||||
if zero_on_step:
|
||||
last = zeroed
|
||||
else:
|
||||
last = array[-1:].copy()
|
||||
|
||||
dst.push(last)
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
"""
|
||||
Momentum bby.
|
||||
|
||||
"""
|
||||
from typing import AsyncIterator, Optional
|
||||
|
||||
|
@ -23,12 +24,9 @@ import numpy as np
|
|||
from numba import jit, float64, optional, int64
|
||||
|
||||
from ..data._normalize import iterticks
|
||||
from ..data._sharedmem import ShmArray
|
||||
|
||||
|
||||
# TODO: things to figure the fuck out:
|
||||
# - how to handle non-plottable values
|
||||
# - composition of fsps / implicit chaining
|
||||
|
||||
@jit(
|
||||
float64[:](
|
||||
float64[:],
|
||||
|
@ -39,11 +37,14 @@ from ..data._normalize import iterticks
|
|||
nogil=True
|
||||
)
|
||||
def ema(
|
||||
|
||||
y: 'np.ndarray[float64]',
|
||||
alpha: optional(float64) = None,
|
||||
ylast: optional(float64) = None,
|
||||
|
||||
) -> 'np.ndarray[float64]':
|
||||
r"""Exponential weighted moving average owka 'Exponential smoothing'.
|
||||
r'''
|
||||
Exponential weighted moving average owka 'Exponential smoothing'.
|
||||
|
||||
- https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
|
||||
- https://en.wikipedia.org/wiki/Exponential_smoothing
|
||||
|
@ -68,7 +69,8 @@ def ema(
|
|||
|
||||
More discussion here:
|
||||
https://stackoverflow.com/questions/42869495/numpy-version-of-exponential-weighted-moving-average-equivalent-to-pandas-ewm
|
||||
"""
|
||||
|
||||
'''
|
||||
n = y.shape[0]
|
||||
|
||||
if alpha is None:
|
||||
|
@ -105,14 +107,21 @@ def ema(
|
|||
# nogil=True
|
||||
# )
|
||||
def rsi(
|
||||
|
||||
# TODO: use https://github.com/ramonhagenaars/nptyping
|
||||
signal: 'np.ndarray[float64]',
|
||||
period: int64 = 14,
|
||||
up_ema_last: float64 = None,
|
||||
down_ema_last: float64 = None,
|
||||
|
||||
) -> 'np.ndarray[float64]':
|
||||
'''
|
||||
relative strengggth.
|
||||
|
||||
'''
|
||||
alpha = 1/period
|
||||
|
||||
df = np.diff(signal)
|
||||
df = np.diff(signal, prepend=0)
|
||||
|
||||
up = np.where(df > 0, df, 0)
|
||||
up_ema = ema(up, alpha, up_ema_last)
|
||||
|
@ -120,11 +129,12 @@ def rsi(
|
|||
down = np.where(df < 0, -df, 0)
|
||||
down_ema = ema(down, alpha, down_ema_last)
|
||||
|
||||
# avoid dbz errors
|
||||
# avoid dbz errors, this leaves the first
|
||||
# index == 0 right?
|
||||
rs = np.divide(
|
||||
up_ema,
|
||||
down_ema,
|
||||
out=np.zeros_like(up_ema),
|
||||
out=np.zeros_like(signal),
|
||||
where=down_ema != 0
|
||||
)
|
||||
|
||||
|
@ -137,10 +147,18 @@ def rsi(
|
|||
|
||||
|
||||
def wma(
|
||||
|
||||
signal: np.ndarray,
|
||||
length: int,
|
||||
weights: Optional[np.ndarray] = None,
|
||||
|
||||
) -> np.ndarray:
|
||||
'''
|
||||
Compute a windowed moving average of ``signal`` with window
|
||||
``length`` and optional ``weights`` (must be same size as
|
||||
``signal``).
|
||||
|
||||
'''
|
||||
if weights is None:
|
||||
# default is a standard arithmetic mean
|
||||
seq = np.full((length,), 1)
|
||||
|
@ -151,18 +169,22 @@ def wma(
|
|||
return np.convolve(signal, weights, 'valid')
|
||||
|
||||
|
||||
# @piker.fsp.signal(
|
||||
# @piker.fsp.emit(
|
||||
# timeframes=['1s', '5s', '15s', '1m', '5m', '1H'],
|
||||
# )
|
||||
async def _rsi(
|
||||
|
||||
source: 'QuoteStream[Dict[str, Any]]', # noqa
|
||||
ohlcv: "ShmArray[T<'close'>]",
|
||||
ohlcv: ShmArray,
|
||||
period: int = 14,
|
||||
|
||||
) -> AsyncIterator[np.ndarray]:
|
||||
"""Multi-timeframe streaming RSI.
|
||||
'''
|
||||
Multi-timeframe streaming RSI.
|
||||
|
||||
https://en.wikipedia.org/wiki/Relative_strength_index
|
||||
"""
|
||||
|
||||
'''
|
||||
sig = ohlcv.array['close']
|
||||
|
||||
# wilder says to seed the RSI EMAs with the SMA for the "period"
|
||||
|
@ -170,7 +192,8 @@ async def _rsi(
|
|||
|
||||
# TODO: the emas here should be seeded with a period SMA as per
|
||||
# wilder's original formula..
|
||||
rsi_h, last_up_ema_close, last_down_ema_close = rsi(sig, period, seed, seed)
|
||||
rsi_h, last_up_ema_close, last_down_ema_close = rsi(
|
||||
sig, period, seed, seed)
|
||||
up_ema_last = last_up_ema_close
|
||||
down_ema_last = last_down_ema_close
|
||||
|
||||
|
@ -178,7 +201,6 @@ async def _rsi(
|
|||
yield rsi_h
|
||||
|
||||
index = ohlcv.index
|
||||
|
||||
async for quote in source:
|
||||
# tick based updates
|
||||
for tick in iterticks(quote):
|
||||
|
@ -206,16 +228,20 @@ async def _rsi(
|
|||
|
||||
|
||||
async def _wma(
|
||||
|
||||
source, #: AsyncStream[np.ndarray],
|
||||
length: int,
|
||||
ohlcv: np.ndarray, # price time-frame "aware"
|
||||
|
||||
) -> AsyncIterator[np.ndarray]: # maybe something like like FspStream?
|
||||
"""Streaming weighted moving average.
|
||||
'''
|
||||
Streaming weighted moving average.
|
||||
|
||||
``weights`` is a sequence of already scaled values. As an example
|
||||
for the WMA often found in "techincal analysis":
|
||||
``weights = np.arange(1, N) * N*(N-1)/2``.
|
||||
"""
|
||||
|
||||
'''
|
||||
# deliver historical output as "first yield"
|
||||
yield wma(ohlcv.array['close'], length)
|
||||
|
||||
|
|
|
@ -323,7 +323,7 @@ async def fan_out_spawn_fsp_daemons(
|
|||
conf['shm'] = shm
|
||||
|
||||
portal = await n.start_actor(
|
||||
enable_modules=['piker.fsp'],
|
||||
enable_modules=['piker.fsp._engine'],
|
||||
name='fsp.' + display_name,
|
||||
)
|
||||
|
||||
|
|
Loading…
Reference in New Issue