Break hist calc into wap func, use hlc3.
							parent
							
								
									a9caee17a1
								
							
						
					
					
						commit
						1536b97b3c
					
				| 
						 | 
				
			
			@ -14,47 +14,68 @@
 | 
			
		|||
# You should have received a copy of the GNU Affero General Public License
 | 
			
		||||
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 | 
			
		||||
from typing import AsyncIterator
 | 
			
		||||
from typing import AsyncIterator, Optional
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from ..data._normalize import iterticks
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def wap(
 | 
			
		||||
    signal: np.ndarray,
 | 
			
		||||
    weights: np.ndarray,
 | 
			
		||||
) -> np.ndarray:
 | 
			
		||||
    """Weighted average price from signal and weights.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    cum_weights = np.cumsum(weights)
 | 
			
		||||
    cum_weighted_input = np.cumsum(signal * weights)
 | 
			
		||||
    return cum_weighted_input / cum_weights, cum_weighted_input, cum_weights
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
async def _tina_vwap(
 | 
			
		||||
    source,  #: AsyncStream[np.ndarray],
 | 
			
		||||
    ohlcv: np.ndarray,  # price time-frame "aware"
 | 
			
		||||
    anchors: Optional[np.ndarray] = None,
 | 
			
		||||
) -> AsyncIterator[np.ndarray]:  # maybe something like like FspStream?
 | 
			
		||||
    """Streaming volume weighted moving average.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Calling this "tina" for now since we're using OHL3 instead of tick.
 | 
			
		||||
    Calling this "tina" for now since we're using HLC3 instead of tick.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    # TODO: anchor to session start
 | 
			
		||||
    if anchors is None:
 | 
			
		||||
        # TODO:
 | 
			
		||||
        # anchor to session start of data if possible
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    a = ohlcv.array
 | 
			
		||||
    ohl3 = (a['open'] + a['high'] + a['low']) / 3
 | 
			
		||||
 | 
			
		||||
    chl3 = (a['close'] + a['high'] + a['low']) / 3
 | 
			
		||||
    v = a['volume']
 | 
			
		||||
    cum_v = np.cumsum(v)
 | 
			
		||||
    cum_weights = np.cumsum(ohl3 * v)
 | 
			
		||||
 | 
			
		||||
    vwap = cum_weights / cum_v
 | 
			
		||||
    h_vwap, cum_wp, cum_v = wap(chl3, v)
 | 
			
		||||
 | 
			
		||||
    # deliver historical output as "first yield"
 | 
			
		||||
    yield vwap
 | 
			
		||||
    yield h_vwap
 | 
			
		||||
 | 
			
		||||
    weights_tot = cum_weights[-1]
 | 
			
		||||
    w_tot = cum_wp[-1]
 | 
			
		||||
    v_tot = cum_v[-1]
 | 
			
		||||
    # vwap_tot = h_vwap[-1]
 | 
			
		||||
 | 
			
		||||
    async for quote in source:
 | 
			
		||||
 | 
			
		||||
        for tick in iterticks(quote, types=['trade']):
 | 
			
		||||
 | 
			
		||||
            o, h, l, v = ohlcv.array[-1][
 | 
			
		||||
                ['open', 'high', 'low', 'volume']
 | 
			
		||||
            ]
 | 
			
		||||
            v_tot += v
 | 
			
		||||
            # c, h, l, v = ohlcv.array[-1][
 | 
			
		||||
            #     ['closes', 'high', 'low', 'volume']
 | 
			
		||||
            # ]
 | 
			
		||||
 | 
			
		||||
            yield ((((o + h + l) / 3) * v) + weights_tot) / v_tot
 | 
			
		||||
            # this computes tick-by-tick weightings from here forward
 | 
			
		||||
            size = tick['size']
 | 
			
		||||
            price = tick['price']
 | 
			
		||||
 | 
			
		||||
            v_tot += size
 | 
			
		||||
            w_tot += price * size
 | 
			
		||||
 | 
			
		||||
            # yield ((((o + h + l) / 3) * v) weights_tot) / v_tot
 | 
			
		||||
            yield w_tot / v_tot
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue