2020-11-06 17:23:14 +00:00
|
|
|
# piker: trading gear for hackers
|
2021-07-22 15:42:12 +00:00
|
|
|
# Copyright (C) 2018-present Tyler Goodlet (in stewardship for piker0)
|
2020-11-06 17:23:14 +00:00
|
|
|
|
|
|
|
# This program is free software: you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU Affero General Public License as published by
|
|
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
|
|
|
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU Affero General Public License for more details.
|
|
|
|
|
|
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
|
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
|
2020-06-16 17:32:03 +00:00
|
|
|
"""
|
2020-12-12 22:14:03 +00:00
|
|
|
numpy data source coversion helpers.
|
2020-06-16 17:32:03 +00:00
|
|
|
"""
|
2022-03-01 00:47:07 +00:00
|
|
|
from __future__ import annotations
|
2022-02-22 23:16:12 +00:00
|
|
|
from typing import Any
|
2020-10-22 18:05:35 +00:00
|
|
|
import decimal
|
2020-06-16 17:32:03 +00:00
|
|
|
|
|
|
|
import numpy as np
|
2022-03-29 17:15:23 +00:00
|
|
|
from pydantic import BaseModel
|
2020-12-12 22:14:03 +00:00
|
|
|
# from numba import from_dtype
|
2020-06-16 17:32:03 +00:00
|
|
|
|
|
|
|
|
2020-12-12 22:14:03 +00:00
|
|
|
ohlc_fields = [
|
|
|
|
('time', float),
|
|
|
|
('open', float),
|
|
|
|
('high', float),
|
|
|
|
('low', float),
|
|
|
|
('close', float),
|
|
|
|
('volume', int),
|
|
|
|
('bar_wap', float),
|
|
|
|
]
|
|
|
|
|
|
|
|
ohlc_with_index = ohlc_fields.copy()
|
|
|
|
ohlc_with_index.insert(0, ('index', int))
|
|
|
|
|
2020-09-26 18:11:14 +00:00
|
|
|
# our minimum structured array layout for ohlc data
|
2020-12-12 22:14:03 +00:00
|
|
|
base_iohlc_dtype = np.dtype(ohlc_with_index)
|
|
|
|
base_ohlc_dtype = np.dtype(ohlc_fields)
|
|
|
|
|
|
|
|
# TODO: for now need to construct this manually for readonly arrays, see
|
|
|
|
# https://github.com/numba/numba/issues/4511
|
|
|
|
# numba_ohlc_dtype = from_dtype(base_ohlc_dtype)
|
2020-06-16 17:32:03 +00:00
|
|
|
|
2020-07-15 12:42:01 +00:00
|
|
|
# map time frame "keys" to minutes values
|
|
|
|
tf_in_1m = {
|
|
|
|
'1m': 1,
|
|
|
|
'5m': 5,
|
|
|
|
'15m': 15,
|
|
|
|
'30m': 30,
|
|
|
|
'1h': 60,
|
|
|
|
'4h': 240,
|
|
|
|
'1d': 1440,
|
|
|
|
}
|
2020-06-16 17:32:03 +00:00
|
|
|
|
|
|
|
|
2022-02-19 21:09:14 +00:00
|
|
|
def mk_fqsn(
|
|
|
|
provider: str,
|
|
|
|
symbol: str,
|
|
|
|
|
|
|
|
) -> str:
|
|
|
|
'''
|
|
|
|
Generate a "fully qualified symbol name" which is
|
|
|
|
a reverse-hierarchical cross broker/provider symbol
|
|
|
|
|
|
|
|
'''
|
|
|
|
return '.'.join([symbol, provider]).lower()
|
|
|
|
|
|
|
|
|
2020-10-22 18:05:35 +00:00
|
|
|
def float_digits(
|
|
|
|
value: float,
|
|
|
|
) -> int:
|
2021-08-18 14:08:57 +00:00
|
|
|
if value == 0:
|
|
|
|
return 0
|
|
|
|
|
2020-10-22 18:05:35 +00:00
|
|
|
return int(-decimal.Decimal(str(value)).as_tuple().exponent)
|
|
|
|
|
|
|
|
|
2020-06-17 15:44:54 +00:00
|
|
|
def ohlc_zeros(length: int) -> np.ndarray:
|
|
|
|
"""Construct an OHLC field formatted structarray.
|
|
|
|
|
|
|
|
For "why a structarray" see here: https://stackoverflow.com/a/52443038
|
|
|
|
Bottom line, they're faster then ``np.recarray``.
|
2020-10-22 18:05:35 +00:00
|
|
|
|
2020-06-17 15:44:54 +00:00
|
|
|
"""
|
2020-09-10 01:19:36 +00:00
|
|
|
return np.zeros(length, dtype=base_ohlc_dtype)
|
2020-06-17 15:44:54 +00:00
|
|
|
|
|
|
|
|
2022-04-11 05:01:36 +00:00
|
|
|
def unpack_fqsn(fqsn: str) -> tuple[str, str, str]:
|
2022-03-18 14:59:57 +00:00
|
|
|
'''
|
|
|
|
Unpack a fully-qualified-symbol-name to ``tuple``.
|
|
|
|
|
|
|
|
'''
|
2022-03-19 17:47:25 +00:00
|
|
|
venue = ''
|
|
|
|
suffix = ''
|
|
|
|
|
2022-03-18 14:59:57 +00:00
|
|
|
# TODO: probably reverse the order of all this XD
|
|
|
|
tokens = fqsn.split('.')
|
2022-03-19 17:47:25 +00:00
|
|
|
if len(tokens) < 3:
|
|
|
|
# probably crypto
|
|
|
|
symbol, broker = tokens
|
|
|
|
return (
|
|
|
|
broker,
|
|
|
|
symbol,
|
|
|
|
'',
|
|
|
|
)
|
|
|
|
|
|
|
|
elif len(tokens) > 3:
|
2022-03-18 14:59:57 +00:00
|
|
|
symbol, venue, suffix, broker = tokens
|
|
|
|
else:
|
|
|
|
symbol, venue, broker = tokens
|
|
|
|
suffix = ''
|
|
|
|
|
|
|
|
# head, _, broker = fqsn.rpartition('.')
|
|
|
|
# symbol, _, suffix = head.rpartition('.')
|
|
|
|
return (
|
|
|
|
broker,
|
|
|
|
'.'.join([symbol, venue]),
|
|
|
|
suffix,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2021-02-06 19:38:00 +00:00
|
|
|
class Symbol(BaseModel):
|
2022-02-28 17:15:10 +00:00
|
|
|
'''
|
|
|
|
I guess this is some kinda container thing for dealing with
|
2020-06-16 17:32:03 +00:00
|
|
|
all the different meta-data formats from brokers?
|
2020-10-22 18:05:35 +00:00
|
|
|
|
2022-02-28 17:15:10 +00:00
|
|
|
'''
|
2021-02-06 19:38:00 +00:00
|
|
|
key: str
|
2022-03-01 00:47:07 +00:00
|
|
|
tick_size: float = 0.01
|
|
|
|
lot_tick_size: float = 0.0 # "volume" precision as min step value
|
|
|
|
tick_size_digits: int = 2
|
|
|
|
lot_size_digits: int = 0
|
2022-03-18 14:59:57 +00:00
|
|
|
suffix: str = ''
|
2022-02-22 23:16:12 +00:00
|
|
|
broker_info: dict[str, dict[str, Any]] = {}
|
2021-01-23 03:56:22 +00:00
|
|
|
|
2021-02-19 23:43:56 +00:00
|
|
|
# specifies a "class" of financial instrument
|
|
|
|
# ex. stock, futer, option, bond etc.
|
|
|
|
|
2022-03-01 00:47:07 +00:00
|
|
|
# @validate_arguments
|
|
|
|
@classmethod
|
|
|
|
def from_broker_info(
|
|
|
|
cls,
|
|
|
|
broker: str,
|
|
|
|
symbol: str,
|
|
|
|
info: dict[str, Any],
|
2022-03-18 14:59:57 +00:00
|
|
|
suffix: str = '',
|
2022-03-01 00:47:07 +00:00
|
|
|
|
|
|
|
# XXX: like wtf..
|
|
|
|
# ) -> 'Symbol':
|
|
|
|
) -> None:
|
|
|
|
|
|
|
|
tick_size = info.get('price_tick_size', 0.01)
|
|
|
|
lot_tick_size = info.get('lot_tick_size', 0.0)
|
|
|
|
|
|
|
|
return Symbol(
|
|
|
|
key=symbol,
|
|
|
|
tick_size=tick_size,
|
|
|
|
lot_tick_size=lot_tick_size,
|
|
|
|
tick_size_digits=float_digits(tick_size),
|
|
|
|
lot_size_digits=float_digits(lot_tick_size),
|
2022-03-18 14:59:57 +00:00
|
|
|
suffix=suffix,
|
2022-03-01 00:47:07 +00:00
|
|
|
broker_info={broker: info},
|
|
|
|
)
|
|
|
|
|
2022-03-18 14:59:57 +00:00
|
|
|
@classmethod
|
|
|
|
def from_fqsn(
|
|
|
|
cls,
|
|
|
|
fqsn: str,
|
|
|
|
info: dict[str, Any],
|
|
|
|
|
|
|
|
# XXX: like wtf..
|
|
|
|
# ) -> 'Symbol':
|
|
|
|
) -> None:
|
2022-04-11 05:01:36 +00:00
|
|
|
broker, key, suffix = unpack_fqsn(fqsn)
|
2022-03-18 14:59:57 +00:00
|
|
|
return cls.from_broker_info(
|
|
|
|
broker,
|
|
|
|
key,
|
|
|
|
info=info,
|
|
|
|
suffix=suffix,
|
|
|
|
)
|
|
|
|
|
2022-03-01 00:47:07 +00:00
|
|
|
@property
|
|
|
|
def type_key(self) -> str:
|
|
|
|
return list(self.broker_info.values())[0]['asset_type']
|
|
|
|
|
2021-01-23 03:56:22 +00:00
|
|
|
@property
|
2022-02-22 23:16:12 +00:00
|
|
|
def brokers(self) -> list[str]:
|
2021-01-23 03:56:22 +00:00
|
|
|
return list(self.broker_info.keys())
|
2020-06-16 17:32:03 +00:00
|
|
|
|
2021-01-23 03:56:22 +00:00
|
|
|
def nearest_tick(self, value: float) -> float:
|
2022-03-18 14:59:57 +00:00
|
|
|
'''
|
|
|
|
Return the nearest tick value based on mininum increment.
|
2021-01-23 03:56:22 +00:00
|
|
|
|
2022-03-18 14:59:57 +00:00
|
|
|
'''
|
2021-02-06 16:35:12 +00:00
|
|
|
mult = 1 / self.tick_size
|
2021-01-23 03:56:22 +00:00
|
|
|
return round(value * mult) / mult
|
|
|
|
|
2022-01-11 21:20:26 +00:00
|
|
|
def front_feed(self) -> tuple[str, str]:
|
|
|
|
'''
|
|
|
|
Return the "current" feed key for this symbol.
|
|
|
|
|
|
|
|
(i.e. the broker + symbol key in a tuple).
|
|
|
|
|
|
|
|
'''
|
|
|
|
return (
|
|
|
|
list(self.broker_info.keys())[0],
|
|
|
|
self.key,
|
|
|
|
)
|
|
|
|
|
2022-03-24 17:25:48 +00:00
|
|
|
def tokens(self) -> tuple[str]:
|
2022-03-18 14:59:57 +00:00
|
|
|
broker, key = self.front_feed()
|
|
|
|
if self.suffix:
|
2022-03-24 17:25:48 +00:00
|
|
|
return (key, self.suffix, broker)
|
2022-03-18 14:59:57 +00:00
|
|
|
else:
|
2022-03-24 17:25:48 +00:00
|
|
|
return (key, broker)
|
2022-03-18 14:59:57 +00:00
|
|
|
|
2022-03-24 17:25:48 +00:00
|
|
|
def front_fqsn(self) -> str:
|
2022-04-11 12:48:17 +00:00
|
|
|
'''
|
|
|
|
fqsn = "fully qualified symbol name"
|
|
|
|
|
|
|
|
Basically the idea here is for all client-ish code (aka programs/actors
|
|
|
|
that ask the provider agnostic layers in the stack for data) should be
|
|
|
|
able to tell which backend / venue / derivative each data feed/flow is
|
|
|
|
from by an explicit string key of the current form:
|
|
|
|
|
|
|
|
<instrumentname>.<venue>.<suffixwithmetadata>.<brokerbackendname>
|
|
|
|
|
|
|
|
TODO: I have thoughts that we should actually change this to be
|
|
|
|
more like an "attr lookup" (like how the web should have done
|
|
|
|
urls, but marketting peeps ruined it etc. etc.):
|
|
|
|
|
|
|
|
<broker>.<venue>.<instrumentname>.<suffixwithmetadata>
|
|
|
|
|
|
|
|
'''
|
2022-03-24 17:25:48 +00:00
|
|
|
tokens = self.tokens()
|
2022-03-18 14:59:57 +00:00
|
|
|
fqsn = '.'.join(tokens)
|
|
|
|
return fqsn
|
|
|
|
|
2022-02-19 21:09:14 +00:00
|
|
|
def iterfqsns(self) -> list[str]:
|
2022-03-18 14:59:57 +00:00
|
|
|
keys = []
|
|
|
|
for broker in self.broker_info.keys():
|
|
|
|
fqsn = mk_fqsn(self.key, broker)
|
|
|
|
if self.suffix:
|
|
|
|
fqsn += f'.{self.suffix}'
|
|
|
|
keys.append(fqsn)
|
|
|
|
|
|
|
|
return keys
|
2022-02-19 21:09:14 +00:00
|
|
|
|
2021-09-10 15:35:00 +00:00
|
|
|
|
2020-06-16 17:32:03 +00:00
|
|
|
def _nan_to_closest_num(array: np.ndarray):
|
|
|
|
"""Return interpolated values instead of NaN.
|
2020-10-22 18:05:35 +00:00
|
|
|
|
2020-06-16 17:32:03 +00:00
|
|
|
"""
|
|
|
|
for col in ['open', 'high', 'low', 'close']:
|
|
|
|
mask = np.isnan(array[col])
|
|
|
|
if not mask.size:
|
|
|
|
continue
|
|
|
|
array[col][mask] = np.interp(
|
|
|
|
np.flatnonzero(mask), np.flatnonzero(~mask), array[col][~mask]
|
|
|
|
)
|