This commit obviously denotes a re-license of all applicable parts of
the code base. Acknowledgement of this change was completed in #274 by
the majority of the current set of contributors. From here henceforth
all changes will be AGPL licensed and distributed. This is purely an
effort to maintain the same copy-left policy whilst closing the
(perceived) SaaS loophole the GPL allows for. It is merely for this
loophole: to avoid code hiding by any potential "network providers" who
are attempting to use the project to make a profit without either
compensating the authors or re-distributing their changes.
I thought quite a bit about this change and can't see a reason not to
close the SaaS loophole in our current license. We still are (hard)
copy-left and I plan to keep the code base this way for a couple
reasons:
- The code base produces income/profit through parent projects and is
demonstrably of high value.
- I believe firms should not get free lunch for the sake of
"contributions from their employees" or "usage as a service" which
I have found to be a dubious argument at best.
- If a firm who intends to profit from the code base wants to use it
they can propose a secondary commercial license to purchase with the
proceeds going to the project's authors under some form of well
defined contract.
- Many successful projects like Qt use this model; I see no reason it
can't work in this case until such a time as the authors feel it
should be loosened.
There has been detailed discussion in #103 on licensing alternatives.
The main point of this AGPL change is to protect the code base for the
time being from exploitation while it grows and as we move into the next
phase of development which will include extension into the multi-host
distributed software space.
If we make it too fast a nursery with debug mode children can cancel
too fast and causes some test failures. It's likely not a huge deal
anyway since the purpose of this poll/check is for human interaction
and the current delay isn't really that noticeable.
Decrease log levels in the debug module to avoid console noise when in
use. Toss in some more detailed comments around the new debugger lock
points.
We're not actually using this but it's for reference if we do end up
needing it.
The std lib's `pdb` internals override SIGINT handling whenever one
enters the debugger repl. Force a handler that kills the tree if SIGINT
is triggered from the root actor, otherwise ignore it since supervised
children should be managed already. This resolves an issue with guest
mode where `pdb` causes SIGINTs to be swallowed resulting in the host
loop never terminating the process tree.
Finally this makes a cancelled root actor nursery not clobber child
tasks which request and lock the root's tty for the debugger repl.
Using an edge triggered event which is set after all fifo-lock-queued
tasks are complete, we can be sure that no lingering child tasks are
going to get interrupted during pdb use and tty lock acquisition.
Further, even if new tasks do queue up to get the lock, the root will
incrementally send cancel msgs to each sub-actor only once the tty is
not locked by a (set of) child request task(s). Add shielding around all
the critical sections where the child attempts to allocate the lock from
the root such that it won't be disrupted from cancel messages from the
root after the acquire lock transaction has started.
A context is the natural fit (vs. a receive stream) for locking the root
proc's tty usage via it's `.started()` sync point. Simplify the
`_breakpoin()` routine to be a simple async func instead of all this
"returning a coroutine" stuff from before we decided that
`tractor.breakpoint()` must be async. Use `runtime` level for locking
logging making it easier to trace.
This resolves and completes #69 allowing all RPC invocation APIs to pass
function references directly instead of explicit `str` names for the
target namespace and function (this is still done implicitly
underneath). This brings us closer to `trio`'s task running API as well
as acknowledges that any inter-host RPC system (and API) will likely
need to be implemented on top of local RPC primitives anyway. Even if
this ends up **not** being true we can always go to "function stubs" as
part of our IAC protocol or, add a new method to do explicit namespace
calls: `.run_from_module()` or whatever everyone votes on.
Resolves#69
Further, this commit drops `Actor.statespace` from the entire system
since a user can easily get this same functionality using module
level variables. Fix docs to match all these changes (luckily mostly
already done due to example scripts referencing).
Turns out this is a lower level issue in terms of the stdlib's default
`pdb.Pdb` settings and how they conflict with `trio`s cancellation and
KBI handling. The details are hashed out more thoroughly in
python-trio/trio#1155. Maybe we can get a fix in trio so things are
solved under our feet :)
Every subactor in the tree now receives the socket (or whatever the
mailbox type ends up being) during startup and can call the new
`tractor._discovery.get_root()` function to get a portal to the current
root actor in their tree. The main reason for adding this atm is to
support nested child actors gaining access to the root's tty lock for
debugging.
Also, when a channel disconnects from a message loop, might as well kill
all its rpc tasks.
Seems like the request task cancel scope is actually solving all the
deadlock issues and masking SIGINT isn't changing much behaviour at all.
I think let's keep it unmasked for now in case it does turn out useful
in cancelling from unrecoverable states while in debug.
This is needed in order to avoid the deadlock condition where
a child actor is waiting on the root actor's tty lock but it's parent
(possibly the root) is waiting on it to terminate after sending a cancel
request. The solution is simple: create a cancel scope around the
request in the child and always cancel it when a cancel request from the
parent arrives.
This seems to prevent a certain class of bugs to do with the root actor
cancelling local tasks and getting into deadlock while children are
trying to acquire the tty lock. I'm not sure it's the best idea yet
since you're pretty much guaranteed to get "stuck" if a child activates
the debugger after the root has been cancelled (at least "stuck" in
terms of SIGINT being ignored). That kinda race condition seems to still
exist somehow: a child can "beat" the root to activating the tty lock
and the parent is stuck waiting on the child to terminate via its
nursery.
Keep an actor local (bool) flag which determines if there is already
a running debugger instance for the current process. If another task
tries to enter in this case, simply ignore it since allowing entry may
result in a deadlock where the new task will be sync waiting on the
parent stdio lock (a case that will never arrive due to the current
debugger's active use of it).
In the future we may want to allow FIFO queueing of local tasks where
instead of ignoring re-entrant breakpoints we allow tasks to async wait
for debugger release, though not sure the implications of that since
you'd likely want to support switching the debugger to the new task and
that could cause deadlocks where tasks are inter-dependent. It may be
more sane to just error on multiple breakpoint requests within an actor.
This is the first step in addressing #113 and the initial support
of #130. Basically this allows (sub)processes to engage the `pdbpp`
debug machinery which read/writes the root actor's tty but only in
a FIFO semaphored way such that no two processes are using it
simultaneously. That means you can have multiple actors enter a trace or
crash and run the debugger in a sensible way without clobbering each
other's access to stdio. It required adding some "tear down hooks" to
a custom `pdbpp.Pdb` type such that we release a child's lock on the
parent on debugger exit (in this case when either of the "continue" or
"quit" commands are issued to the debugger console).
There's some code left commented in anticipation of full support for
issue #130 where we're need to actually capture and feed stdin to the
target (remote) actor which won't necessarily being running on the same
host.