forked from goodboy/tractor
1
0
Fork 0

Compare commits

..

65 Commits

Author SHA1 Message Date
Tyler Goodlet a55ea18c7d Support a delay in daemon actor noops 2021-10-12 12:05:03 -04:00
Tyler Goodlet 797bb22981 Lol, fix sub-actor case 2021-10-12 12:03:57 -04:00
Tyler Goodlet 2c74db9cb7 Relay `ContextCancelled` for `Portal.run()` cancelled remote tasks 2021-10-12 12:03:15 -04:00
Tyler Goodlet 39feb627a8 Disable frame hides in portal temporarily 2021-10-12 12:02:04 -04:00
Tyler Goodlet 348423ece7 Let `ActorNursery` choose whether to raise remote errors
- Don't raise inside `result_from_portal()` and instead return a flag that
  indicates whether the error was remote or not.
- Stick the soft reap sequence outside a `finally:`.
- do error tracking in `ActorNursery._handle_err() -> bool:` to avoid duplicate
  raises on close.
- add `ActorNursery.cancel_called: bool`
- accept a cancelled soft reap and toss in some logging for now to begin
  figuring out races with the spawner nursery vs. the enter block being
  the source of an error that causes actor nursery cancellation.
- cancel the spawn nursery if all procs complete but the nursery hasn't
  been closed (pretty sure this isn't correct nor working.. the nursery
  should always be closed in order for the join procs event to have
  arrived).
- tossed in some code for the mp backend but none of it works (or is
  tested) and needs to be rewritten like the trio spawner likely.

  All still very WIP in case that wasn't clear XD
2021-10-12 11:38:19 -04:00
Tyler Goodlet 5eb7c4c857 Disable showing log capture when `--ll` is passed 2021-10-11 21:53:54 -04:00
Tyler Goodlet 4d30e25591 Don't alert nursery on expected cancel result 2021-10-10 16:47:17 -04:00
Tyler Goodlet c01d2f8aea Don't double request a cancelled actor 2021-10-10 16:46:29 -04:00
Tyler Goodlet 8e21bb046e Add `Portal.cancel_called` 2021-10-10 16:43:32 -04:00
Tyler Goodlet 66137030d9 Try out always delivering `ContextCancelled`
Previously, on a task cancel request there was no real response other
then the `None` returned from the `Actor._cancel_task()` method and
sometimes this might get lost if the cancel task was cancelled by
a runtime cancel request (i.e. an "actor cancel"). Instead let's try
always checking if the task's cancel scope is cancelled and if so relay
back to the caller a `ContextCancelled` which can then be explicitly
handled by actor nursery machinery as well as individual cancel APIs
(`Portal.cancel_actor()`, and maybe later if we decide to expose the
`tractor.Context` on every `Portal.run()` call).

Also,
- fix up a bunch of cancellation related logging
- add an `Actor.cancel_called` flag much like `trio`'s cancel scope
2021-10-10 16:36:19 -04:00
Tyler Goodlet cef9ab7353 Handle varied multierror order with broker resource err 2021-10-10 13:07:15 -04:00
Tyler Goodlet 0dcffeee0f Tweaks to get us down to 3 failed cancel tests
The remaining errors all have to do with not getting the exact same
format as previous of collected `.run_in_actor()` errors as `MultiError`s.
Not even sure at this point if the whole collect single task results and
bubble should be a thing but trying to keep the support for now I guess.

There's still issues with a hang in the pub sub tests and the one
debugger test has a different outcome due to the root getting the lock
from the breakpoint forever child too quickly.

- go back to raising portal result-that-are-errors in the spawn task
- go back to shielding the nursery close / proc join event
  - report any error on this shielded join and relay to nursery handler
    method (which should be customizable in the future for alternate
    strats then OCA) as well try to collect ria (run in actor) result
- drop async (via nursery) ria result collection, just do it sync with
  the soft `proc.wait()` reap immediately after, which should work
  presuming that the ipc connection will break on process termination
  anyway and it'll mean no multierror to deal with and no cancel scope
  to manage on the ria reaper task.
2021-10-10 13:06:27 -04:00
Tyler Goodlet 8a59713d48 Re-route errors from spawn tasks and mngr task to handler 2021-10-10 11:54:19 -04:00
Tyler Goodlet 0488f5e57e Drop to a 2 polls for root debugging check 2021-10-10 11:52:24 -04:00
Tyler Goodlet a3cdba0577 Do immediate remote task cancels
As for `Actor.cancel()` requests, do the same for
`Actor._cancel_task()` but use `_invoke()` to ensure
correct msg transactions with caller. Don't cancel task
cancels on a cancel-all-tasks operation in attempt at
more determinism.
2021-10-10 11:42:32 -04:00
Tyler Goodlet 5048c3534f Re-raise KBI's i guess? 2021-10-08 21:01:51 -04:00
Tyler Goodlet 5df08aabb7 Hide some portal stack layers in tracebacks 2021-10-08 18:53:54 -04:00
Tyler Goodlet 1b7cd419f2 Drop old portal helper 2021-10-08 18:20:57 -04:00
Tyler Goodlet e32a5917a9 Don't whine about ; it ain't rpc 2021-10-08 18:20:08 -04:00
Tyler Goodlet 7250deb30f Make OCA nursery **not** a multiplexed mindfuck 2021-10-08 18:18:00 -04:00
Tyler Goodlet 64ebb2aff4 WIP rework trio spanwer to include cancellation logic; not correct yet.. 2021-10-08 18:14:44 -04:00
Tyler Goodlet c02a493d8c Add a maybe-open-debugger helper 2021-10-08 18:13:55 -04:00
Tyler Goodlet fb026e3747 First draft: `.to_asyncio.open_channel_from()` 2021-10-07 23:14:34 -04:00
Tyler Goodlet 2afbc3898f Make actor runtime cancellation immediate 2021-10-07 23:13:47 -04:00
Tyler Goodlet f72eabd42a Drop breakpoint owned lock 2021-10-06 17:05:58 -04:00
Tyler Goodlet 6e646a6fa6 Always cancel the asyncio task? 2021-10-06 17:05:58 -04:00
Tyler Goodlet aa94ea5bcc WIP, add back in root shield, print out pdb sigint opts 2021-10-06 17:05:58 -04:00
Tyler Goodlet a2a4f7af09 Test non-shielding root lock acquire on breakpoint entry 2021-10-06 17:05:58 -04:00
Tyler Goodlet 6da2c3a885 Drop old implementation cruft 2021-10-06 17:05:58 -04:00
Tyler Goodlet ed10f6e0c1 Fix error propagation on asyncio streaming tasks 2021-10-06 17:05:58 -04:00
Tyler Goodlet b43539b252 Drop bad .close() call 2021-10-06 17:05:58 -04:00
Tyler Goodlet fc46f5b74a Proxy asyncio cancelleds as well 2021-10-06 17:05:58 -04:00
Tyler Goodlet efe83f78a3 Don't kill root's immediate children when in debug
If the root calls `trio.Process.kill()` on immediate child proc teardown
when the child is using pdb, we can get stdstreams clobbering that
results in a pdb++ repl where the user can't see what's been typed. Not
killing such children on cancellation / error seems to resolve this
issue whilst still giving reliable termination. For now, code that
special path until a time it becomes a problem for ensuring zombie
reaps.
2021-10-06 17:05:58 -04:00
Tyler Goodlet de87cb510a WIP redo asyncio async gen streaming 2021-10-06 17:05:58 -04:00
Tyler Goodlet e8431bffd0 Support asyncio actors with the trio spawner backend 2021-10-06 17:05:58 -04:00
Tyler Goodlet d720c6a9c2 Support sync code breakpointing via built-in
Override `breakpoint()` for sync code making it work
properly with `trio` as per:

https://github.com/python-trio/trio/issues/1155#issuecomment-742964018

Relates to #193
2021-10-06 17:05:58 -04:00
Tyler Goodlet 732eaaf21e Support asyncio actors with the trio spawner backend 2021-10-06 17:05:58 -04:00
Tyler Goodlet c63323086c Link to SC on wikipedia 2021-10-06 17:05:58 -04:00
Tyler Goodlet 03ae42fa10 Add per actor debug mode toggle 2021-10-06 17:05:58 -04:00
Tyler Goodlet 2cd3a878f0 Support sync code breakpointing via built-in
Override `breakpoint()` for sync code making it work
properly with `trio` as per:

https://github.com/python-trio/trio/issues/1155#issuecomment-742964018

Relates to #193
2021-10-06 17:05:58 -04:00
Tyler Goodlet a237dcd020 Pass func refs 2021-10-06 17:05:58 -04:00
Tyler Goodlet b4fe207369 Add initial infected asyncio error propagation test 2021-10-06 17:05:58 -04:00
Tyler Goodlet 9a994e2de3 Raise any asyncio errors if in trio task on cancel 2021-10-06 17:05:58 -04:00
Tyler Goodlet d2a810d950 Raise from asyncio error; fixes mypy 2021-10-06 17:05:58 -04:00
Tyler Goodlet 07c2151010 Tweak log msg 2021-10-06 17:05:58 -04:00
Tyler Goodlet 0d825ae6d7 Log error 2021-10-06 17:05:58 -04:00
Tyler Goodlet 5be8c86e96 Support asyncio actors with the trio spawner backend 2021-10-06 17:05:58 -04:00
Tyler Goodlet aa069a1edc Revert removal of `infect_asyncio` in nursery start methods 2021-10-06 17:05:58 -04:00
Tyler Goodlet 3c1cc90c40 Attempt to make mypy happy.. 2021-10-06 17:05:58 -04:00
Tyler Goodlet 056ca97d2a Add an obnoxious error message on internal failures 2021-10-06 17:05:58 -04:00
Tyler Goodlet 558ba7e008 Wow, fix all the broken async func invoking code..
Clearly this wasn't developed against a task that spawned just an async
func in `asyncio`.. Fix all that and remove a bunch of unnecessary func
layers. Add provisional support for the target receiving the `to_trio`
and `from_trio` channels and for the @tractor.stream marker.
2021-10-06 17:05:58 -04:00
Tyler Goodlet 1aa70da58b Drop entrypoints from `Actor` 2021-10-06 17:05:58 -04:00
Tyler Goodlet 96cf4a962d Move asyncio guest mode entrypoint to `to_asyncio`
The function is useful if you want to run the "main process" under
`asyncio`. Until `trio` core wraps this better we'll keep our own copy
in the interim (there's a new "inside-out-guest" mode almost on
mainline so hang tight).
2021-10-06 17:05:58 -04:00
Tyler Goodlet fd70965422 Propagate any spawned `asyncio` task error upwards
This should mostly maintain top level SC principles for any task spawned
using `tractor.to_asyncio.run()`. When the `asyncio` task completes make
sure to cancel the pertaining `trio` cancel scope and raise any error
that may have resulted.

Resolves #120
2021-10-06 17:05:58 -04:00
Tyler Goodlet 6ad819362e Add a @pub kwarg to allow specifying a "startup response message" 2021-10-06 17:05:58 -04:00
Tyler Goodlet 16ab14d959 Support sync code breakpointing via built-in
Override `breakpoint()` for sync code making it work
properly with `trio` as per:

https://github.com/python-trio/trio/issues/1155#issuecomment-742964018

Relates to #193
2021-10-06 17:05:58 -04:00
Tyler Goodlet c7e03ae3b4 Fix *args-like type annot 2021-10-06 17:02:38 -04:00
Tyler Goodlet 38b844fb22 Lul, fix everything for cluster helper 2021-10-06 17:02:38 -04:00
Tyler Goodlet 3f8f848ce8 Fix type path to new `_supervise` mod 2021-10-06 17:02:38 -04:00
Tyler Goodlet 2fbc43f0c3 Expose `Lagged` for broadcasting 2021-10-06 17:02:38 -04:00
Tyler Goodlet 9c63cb87c7 Fix top level nursery import 2021-10-06 17:02:38 -04:00
Tyler Goodlet d7e36ad817 Add an async actor cluster spawner prototype 2021-10-06 17:02:38 -04:00
Tyler Goodlet 7c6f6571f1 Move broadcast channel parts into trionics 2021-10-06 17:02:38 -04:00
Tyler Goodlet ebf3ad6af0 Start `trionics` sub-pkg with `async_enter_all()`
Since it seems we're building out more and more higher level primitives
in order to support certain parallel style actor trees and messaging
patterns (eg. task broadcast channels), we might as well start a new
sub-package for purely `trio` constructions. We hereby dub this
the realm of `trionics` (like electronics but for trios instead of
electrons).

To kick things off, add an `async_enter_all()` concurrent
exit-stack-like context manager API which will concurrently spawn
a sequence of provided async context managers and deliver their ordered
results but with proper support for `trio` cancellation semantics.
The stdlib's `AsyncExitStack` is not compatible with nurseries not
`trio` tasks (which are cancelled) since as task will be suspended on
the stack after push and does not ever hit a checkpoint until the stack
is closed.
2021-10-06 17:02:38 -04:00
Tyler Goodlet a568d8af74 Rename the nursery module to `_supervise` 2021-10-06 17:02:38 -04:00
91 changed files with 4839 additions and 10576 deletions

View File

@ -1,11 +1,6 @@
name: CI
on:
# any time someone pushes a new branch to origin
push:
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
on: push
jobs:
@ -20,51 +15,26 @@ jobs:
- name: Setup python
uses: actions/setup-python@v2
with:
python-version: '3.10'
python-version: '3.9'
- name: Install dependencies
run: pip install -U . --upgrade-strategy eager -r requirements-test.txt
- name: Run MyPy check
run: mypy tractor/ --ignore-missing-imports --show-traceback
run: mypy tractor/ --ignore-missing-imports
# test that we can generate a software distribution and install it
# thus avoid missing file issues after packaging.
sdist-linux:
name: 'sdist'
runs-on: ubuntu-latest
testing:
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Setup python
uses: actions/setup-python@v2
with:
python-version: '3.10'
- name: Build sdist
run: python setup.py sdist --formats=zip
- name: Install sdist from .zips
run: python -m pip install dist/*.zip
testing-linux:
name: '${{ matrix.os }} Python ${{ matrix.python }} - ${{ matrix.spawn_backend }}'
timeout-minutes: 10
timeout-minutes: 9
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python: ['3.10']
spawn_backend: [
'trio',
'mp_spawn',
'mp_forkserver',
]
os: [ubuntu-latest, windows-latest]
python: ['3.8', '3.9']
spawn_backend: ['trio', 'mp']
steps:
@ -79,53 +49,34 @@ jobs:
- name: Install dependencies
run: pip install -U . -r requirements-test.txt -r requirements-docs.txt --upgrade-strategy eager
- name: List dependencies
run: pip list
- name: Run tests
run: pytest tests/ --spawn-backend=${{ matrix.spawn_backend }} -rs
testing-msgspec:
# runs py3.9 jobs on all OS's but with optional `msgspec` dep installed
name: '${{ matrix.os }} Python ${{ matrix.python }} - ${{ matrix.spawn_backend }} - msgspec'
timeout-minutes: 10
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest]
python: ['3.9']
spawn_backend: ['trio', 'mp']
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Setup python
uses: actions/setup-python@v2
with:
python-version: '${{ matrix.python }}'
- name: Install dependencies
run: pip install -U .[msgspec] -r requirements-test.txt -r requirements-docs.txt --upgrade-strategy eager
- name: Run tests
run: pytest tests/ --spawn-backend=${{ matrix.spawn_backend }} -rsx
# We skip 3.10 on windows for now due to not having any collabs to
# debug the CI failures. Anyone wanting to hack and solve them is very
# welcome, but our primary user base is not using that OS.
# TODO: use job filtering to accomplish instead of repeated
# boilerplate as is above XD:
# - https://docs.github.com/en/actions/learn-github-actions/managing-complex-workflows
# - https://docs.github.com/en/actions/learn-github-actions/managing-complex-workflows#using-a-build-matrix
# - https://docs.github.com/en/actions/learn-github-actions/workflow-syntax-for-github-actions#jobsjob_idif
# testing-windows:
# name: '${{ matrix.os }} Python ${{ matrix.python }} - ${{ matrix.spawn_backend }}'
# timeout-minutes: 12
# runs-on: ${{ matrix.os }}
# strategy:
# fail-fast: false
# matrix:
# os: [windows-latest]
# python: ['3.10']
# spawn_backend: ['trio', 'mp']
# steps:
# - name: Checkout
# uses: actions/checkout@v2
# - name: Setup python
# uses: actions/setup-python@v2
# with:
# python-version: '${{ matrix.python }}'
# - name: Install dependencies
# run: pip install -U . -r requirements-test.txt -r requirements-docs.txt --upgrade-strategy eager
# # TODO: pretty sure this solves debugger deps-issues on windows, but it needs to
# # be verified by someone with a native setup.
# # - name: Force pyreadline3
# # run: pip uninstall pyreadline; pip install -U pyreadline3
# - name: List dependencies
# run: pip list
# - name: Run tests
# run: pytest tests/ --spawn-backend=${{ matrix.spawn_backend }} -rsx
run: pytest tests/ --spawn-backend=${{ matrix.spawn_backend }} -rs

147
LICENSE
View File

@ -1,21 +1,23 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
@ -24,34 +26,44 @@ them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
@ -60,7 +72,7 @@ modification follow.
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
@ -537,45 +549,35 @@ to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
@ -633,29 +635,40 @@ the "copyright" line and a pointer to where the full notice is found.
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -1,2 +0,0 @@
# https://packaging.python.org/en/latest/guides/using-manifest-in/#using-manifest-in
include docs/README.rst

375
NEWS.rst
View File

@ -4,381 +4,6 @@ Changelog
.. towncrier release notes start
tractor 0.1.0a5 (2022-08-03)
============================
This is our final release supporting Python 3.9 since we will be moving
internals to the new `match:` syntax from 3.10 going forward and
further, we have officially dropped usage of the `msgpack` library and
happily adopted `msgspec`.
Features
--------
- `#165 <https://github.com/goodboy/tractor/issues/165>`_: Add SIGINT
protection to our `pdbpp` based debugger subystem such that for
(single-depth) actor trees in debug mode we ignore interrupts in any
actor currently holding the TTY lock thus avoiding clobbering IPC
connections and/or task and process state when working in the REPL.
As a big note currently so called "nested" actor trees (trees with
actors having more then one parent/ancestor) are not fully supported
since we don't yet have a mechanism to relay the debug mode knowledge
"up" the actor tree (for eg. when handling a crash in a leaf actor).
As such currently there is a set of tests and known scenarios which will
result in process cloberring by the zombie repaing machinery and these
have been documented in https://github.com/goodboy/tractor/issues/320.
The implementation details include:
- utilizing a custom SIGINT handler which we apply whenever an actor's
runtime enters the debug machinery, which we also make sure the
stdlib's `pdb` configuration doesn't override (which it does by
default without special instance config).
- litter the runtime with `maybe_wait_for_debugger()` mostly in spots
where the root actor should block before doing embedded nursery
teardown ops which both cancel potential-children-in-deubg as well
as eventually trigger zombie reaping machinery.
- hardening of the TTY locking semantics/API both in terms of IPC
terminations and cancellation and lock release determinism from
sync debugger instance methods.
- factoring of locking infrastructure into a new `._debug.Lock` global
which encapsulates all details of the ``trio`` sync primitives and
task/actor uid management and tracking.
We also add `ctrl-c` cases throughout the test suite though these are
disabled for py3.9 (`pdbpp` UX differences that don't seem worth
compensating for, especially since this will be our last 3.9 supported
release) and there are a slew of marked cases that aren't expected to
work in CI more generally (as mentioned in the "nested" tree note
above) despite seemingly working when run manually on linux.
- `#304 <https://github.com/goodboy/tractor/issues/304>`_: Add a new
``to_asyncio.LinkedTaskChannel.subscribe()`` which gives task-oriented
broadcast functionality semantically equivalent to
``tractor.MsgStream.subscribe()`` this makes it possible for multiple
``trio``-side tasks to consume ``asyncio``-side task msgs in tandem.
Further Improvements to the test suite were added in this patch set
including a new scenario test for a sub-actor managed "service nursery"
(implementing the basics of a "service manager") including use of
*infected asyncio* mode. Further we added a lower level
``test_trioisms.py`` to start to track issues we need to work around in
``trio`` itself which in this case included a bug we were trying to
solve related to https://github.com/python-trio/trio/issues/2258.
Bug Fixes
---------
- `#318 <https://github.com/goodboy/tractor/issues/318>`_: Fix
a previously undetected ``trio``-``asyncio`` task lifetime linking
issue with the ``to_asyncio.open_channel_from()`` api where both sides
where not properly waiting/signalling termination and it was possible
for ``asyncio``-side errors to not propagate due to a race condition.
The implementation fix summary is:
- add state to signal the end of the ``trio`` side task to be
read by the ``asyncio`` side and always cancel any ongoing
task in such cases.
- always wait on the ``asyncio`` task termination from the ``trio``
side on error before maybe raising said error.
- always close the ``trio`` mem chan on exit to ensure the other
side can detect it and follow.
Trivial/Internal Changes
------------------------
- `#248 <https://github.com/goodboy/tractor/issues/248>`_: Adjust the
`tractor._spawn.soft_wait()` strategy to avoid sending an actor cancel
request (via `Portal.cancel_actor()`) if either the child process is
detected as having terminated or the IPC channel is detected to be
closed.
This ensures (even) more deterministic inter-actor cancellation by
avoiding the timeout condition where possible when a whild never
sucessfully spawned, crashed, or became un-contactable over IPC.
- `#295 <https://github.com/goodboy/tractor/issues/295>`_: Add an
experimental ``tractor.msg.NamespacePath`` type for passing Python
objects by "reference" through a ``str``-subtype message and using the
new ``pkgutil.resolve_name()`` for reference loading.
- `#298 <https://github.com/goodboy/tractor/issues/298>`_: Add a new
`tractor.experimental` subpackage for staging new high level APIs and
subystems that we might eventually make built-ins.
- `#300 <https://github.com/goodboy/tractor/issues/300>`_: Update to and
pin latest ``msgpack`` (1.0.3) and ``msgspec`` (0.4.0) both of which
required adjustments for backwards imcompatible API tweaks.
- `#303 <https://github.com/goodboy/tractor/issues/303>`_: Fence off
``multiprocessing`` imports until absolutely necessary in an effort to
avoid "resource tracker" spawning side effects that seem to have
varying degrees of unreliability per Python release. Port to new
``msgspec.DecodeError``.
- `#305 <https://github.com/goodboy/tractor/issues/305>`_: Add
``tractor.query_actor()`` an addr looker-upper which doesn't deliver
a ``Portal`` instance and instead just a socket address ``tuple``.
Sometimes it's handy to just have a simple way to figure out if
a "service" actor is up, so add this discovery helper for that. We'll
prolly just leave it undocumented for now until we figure out
a longer-term/better discovery system.
- `#316 <https://github.com/goodboy/tractor/issues/316>`_: Run windows
CI jobs on python 3.10 after some hacks for ``pdbpp`` dependency
issues.
Issue was to do with the now deprecated `pyreadline` project which
should be changed over to `pyreadline3`.
- `#317 <https://github.com/goodboy/tractor/issues/317>`_: Drop use of
the ``msgpack`` package and instead move fully to the ``msgspec``
codec library.
We've now used ``msgspec`` extensively in production and there's no
reason to not use it as default. Further this change preps us for the up
and coming typed messaging semantics (#196), dialog-unprotocol system
(#297), and caps-based messaging-protocols (#299) planned before our
first beta.
tractor 0.1.0a4 (2021-12-18)
============================
Features
--------
- `#275 <https://github.com/goodboy/tractor/issues/275>`_: Re-license
code base under AGPLv3. Also see `#274
<https://github.com/goodboy/tractor/pull/274>`_ for majority
contributor consensus on this decision.
- `#121 <https://github.com/goodboy/tractor/issues/121>`_: Add
"infected ``asyncio`` mode; a sub-system to spawn and control
``asyncio`` actors using ``trio``'s guest-mode.
This gets us the following very interesting functionality:
- ability to spawn an actor that has a process entry point of
``asyncio.run()`` by passing ``infect_asyncio=True`` to
``Portal.start_actor()`` (and friends).
- the ``asyncio`` actor embeds ``trio`` using guest-mode and starts
a main ``trio`` task which runs the ``tractor.Actor._async_main()``
entry point engages all the normal ``tractor`` runtime IPC/messaging
machinery; for all purposes the actor is now running normally on
a ``trio.run()``.
- the actor can now make one-to-one task spawning requests to the
underlying ``asyncio`` event loop using either of:
* ``to_asyncio.run_task()`` to spawn and run an ``asyncio`` task to
completion and block until a return value is delivered.
* ``async with to_asyncio.open_channel_from():`` which spawns a task
and hands it a pair of "memory channels" to allow for bi-directional
streaming between the now SC-linked ``trio`` and ``asyncio`` tasks.
The output from any call(s) to ``asyncio`` can be handled as normal in
``trio``/``tractor`` task operation with the caveat of the overhead due
to guest-mode use.
For more details see the `original PR
<https://github.com/goodboy/tractor/pull/121>`_ and `issue
<https://github.com/goodboy/tractor/issues/120>`_.
- `#257 <https://github.com/goodboy/tractor/issues/257>`_: Add
``trionics.maybe_open_context()`` an actor-scoped async multi-task
context manager resource caching API.
Adds an SC-safe cacheing async context manager api that only enters on
the *first* task entry and only exits on the *last* task exit while in
between delivering the same cached value per input key. Keys can be
either an explicit ``key`` named arg provided by the user or a
hashable ``kwargs`` dict (will be converted to a ``list[tuple]``) which
is passed to the underlying manager function as input.
- `#261 <https://github.com/goodboy/tractor/issues/261>`_: Add
cross-actor-task ``Context`` oriented error relay, a new stream
overrun error-signal ``StreamOverrun``, and support disabling
``MsgStream`` backpressure as the default before a stream is opened or
by choice of the user.
We added stricter semantics around ``tractor.Context.open_stream():``
particularly to do with streams which are only opened at one end.
Previously, if only one end opened a stream there was no way for that
sender to know if msgs are being received until first, the feeder mem
chan on the receiver side hit a backpressure state and then that
condition delayed its msg loop processing task to eventually create
backpressure on the associated IPC transport. This is non-ideal in the
case where the receiver side never opened a stream by mistake since it
results in silent block of the sender and no adherence to the underlying
mem chan buffer size settings (which is still unsolved btw).
To solve this we add non-backpressure style message pushing inside
``Actor._push_result()`` by default and only use the backpressure
``trio.MemorySendChannel.send()`` call **iff** the local end of the
context has entered ``Context.open_stream():``. This way if the stream
was never opened but the mem chan is overrun, we relay back to the
sender a (new exception) ``SteamOverrun`` error which is raised in the
sender's scope with a special error message about the stream never
having been opened. Further, this behaviour (non-backpressure style
where senders can expect an error on overruns) can now be enabled with
``.open_stream(backpressure=False)`` and the underlying mem chan size
can be specified with a kwarg ``msg_buffer_size: int``.
Further bug fixes and enhancements in this changeset include:
- fix a race we were ignoring where if the callee task opened a context
it could enter ``Context.open_stream()`` before calling
``.started()``.
- Disallow calling ``Context.started()`` more then once.
- Enable ``Context`` linked tasks error relaying via the new
``Context._maybe_raise_from_remote_msg()`` which (for now) uses
a simple ``trio.Nursery.start_soon()`` to raise the error via closure
in the local scope.
- `#267 <https://github.com/goodboy/tractor/issues/267>`_: This
(finally) adds fully acknowledged remote cancellation messaging
support for both explicit ``Portal.cancel_actor()`` calls as well as
when there is a "runtime-wide" cancellations (eg. during KBI or
general actor nursery exception handling which causes a full actor
"crash"/termination).
You can think of this as the most ideal case in 2-generals where the
actor requesting the cancel of its child is able to always receive back
the ACK to that request. This leads to a more deterministic shutdown of
the child where the parent is able to wait for the child to fully
respond to the request. On a localhost setup, where the parent can
monitor the state of the child through process or other OS APIs instead
of solely through IPC messaging, the parent can know whether or not the
child decided to cancel with more certainty. In the case of separate
hosts, we still rely on a simple timeout approach until such a time
where we prefer to get "fancier".
- `#271 <https://github.com/goodboy/tractor/issues/271>`_: Add a per
actor ``debug_mode: bool`` control to our nursery.
This allows spawning actors via ``ActorNursery.start_actor()`` (and
other dependent methods) with a ``debug_mode=True`` flag much like
``tractor.open_nursery():`` such that per process crash handling
can be toggled for cases where a user does not need/want all child actors
to drop into the debugger on error. This is often useful when you have
actor-tasks which are expected to error often (and be re-run) but want
to specifically interact with some (problematic) child.
Bugfixes
--------
- `#239 <https://github.com/goodboy/tractor/issues/239>`_: Fix
keyboard interrupt handling in ``Portal.open_context()`` blocks.
Previously this was not triggering cancellation of the remote task
context and could result in hangs if a stream was also opened. This
fix is to accept `BaseException` since it is likely any other top
level exception other then KBI (even though not expected) should also
get this result.
- `#264 <https://github.com/goodboy/tractor/issues/264>`_: Fix
``Portal.run_in_actor()`` returns ``None`` result.
``None`` was being used as the cached result flag and obviously breaks
on a ``None`` returned from the remote target task. This would cause an
infinite hang if user code ever called ``Portal.result()`` *before* the
nursery exit. The simple fix is to use the *return message* as the
initial "no-result-received-yet" flag value and, once received, the
return value is read from the message to avoid the cache logic error.
- `#266 <https://github.com/goodboy/tractor/issues/266>`_: Fix
graceful cancellation of daemon actors
Previously, his was a bug where if the soft wait on a sub-process (the
``await .proc.wait()``) in the reaper task teardown was cancelled we
would fail over to the hard reaping sequence (meant for culling off any
potential zombies via system kill signals). The hard reap has a timeout
of 3s (currently though in theory we could make it shorter?) before
system signalling kicks in. This means that any daemon actor still
running during nursery exit would get hard reaped (3s later) instead of
cancelled via IPC message. Now we catch the ``trio.Cancelled``, call
``Portal.cancel_actor()`` on the daemon and expect the child to
self-terminate after the runtime cancels and shuts down the process.
- `#278 <https://github.com/goodboy/tractor/issues/278>`_: Repair
inter-actor stream closure semantics to work correctly with
``tractor.trionics.BroadcastReceiver`` task fan out usage.
A set of previously unknown bugs discovered in `#257
<https://github.com/goodboy/tractor/pull/257>`_ let graceful stream
closure result in hanging consumer tasks that use the broadcast APIs.
This adds better internal closure state tracking to the broadcast
receiver and message stream APIs and in particular ensures that when an
underlying stream/receive-channel (a broadcast receiver is receiving
from) is closed, all consumer tasks waiting on that underlying channel
are woken so they can receive the ``trio.EndOfChannel`` signal and
promptly terminate.
tractor 0.1.0a3 (2021-11-02)
============================
Features
--------
- Switch to using the ``trio`` process spawner by default on windows. (#166)
This gets windows users debugger support (manually tested) and in
general a more resilient (nested) actor tree implementation.
- Add optional `msgspec <https://jcristharif.com/msgspec/>`_ support
as an alernative, faster MessagePack codec. (#214)
Provides us with a path toward supporting typed IPC message contracts. Further,
``msgspec`` structs may be a valid tool to start for formalizing our
"SC dialog un-protocol" messages as described in `#36
<https://github.com/goodboy/tractor/issues/36>`_.
- Introduce a new ``tractor.trionics`` `sub-package`_ that exposes
a selection of our relevant high(er) level trio primitives and
goodies. (#241)
At outset we offer a ``gather_contexts()`` context manager for
concurrently entering a sequence of async context managers (much like
a version of ``asyncio.gather()`` but for context managers) and use it
in a new ``tractor.open_actor_cluster()`` manager-helper that can be
entered to concurrently spawn a flat actor pool. We also now publicly
expose our "broadcast channel" APIs (``open_broadcast_receiver()``)
from here.
.. _sub-package: ../tractor/trionics
- Change the core message loop to handle task and actor-runtime cancel
requests immediately instead of scheduling them as is done for rpc-task
requests. (#245)
In order to obtain more reliable teardown mechanics for (complex) actor
trees it's important that we specially treat cancel requests as having
higher priority. Previously, it was possible that task cancel requests
could actually also themselves be cancelled if a "actor-runtime" cancel
request was received (can happen during messy multi actor crashes that
propagate). Instead cancels now block the msg loop until serviced and
a response is relayed back to the requester. This also allows for
improved debugger support since we have determinism guarantees about
which processes must wait before hard killing their children.
- (`#248 <https://github.com/goodboy/tractor/pull/248>`_) Drop Python
3.8 support in favour of rolling with two latest releases for the time
being.
Misc
----
- (`#243 <https://github.com/goodboy/tractor/pull/243>`_) add a distinct
``'CANCEL'`` log level to allow the runtime to emit details about
cancellation machinery statuses.
tractor 0.1.0a2 (2021-09-07)
============================

View File

@ -3,20 +3,13 @@
|gh_actions|
|docs|
``tractor`` is a `structured concurrent`_, multi-processing_ runtime
built on trio_.
``tractor`` is a `structured concurrent`_, multi-processing_ runtime built on trio_.
Fundamentally, ``tractor`` gives you parallelism via
``trio``-"*actors*": independent Python processes (aka
non-shared-memory threads) which maintain structured
concurrency (SC) *end-to-end* inside a *supervision tree*.
Cross-process (and thus cross-host) SC is accomplished through the
combined use of our "actor nurseries_" and an "SC-transitive IPC
protocol" constructed on top of multiple Pythons each running a ``trio``
Fundamentally ``tractor`` gives you parallelism via ``trio``-"*actors*":
our nurseries_ let you spawn new Python processes which each run a ``trio``
scheduled runtime - a call to ``trio.run()``.
We believe the system adheres to the `3 axioms`_ of an "`actor model`_"
We believe the system adhere's to the `3 axioms`_ of an "`actor model`_"
but likely *does not* look like what *you* probably think an "actor
model" looks like, and that's *intentional*.
@ -29,15 +22,12 @@ Features
- **It's just** a ``trio`` API
- *Infinitely nesteable* process trees
- Builtin IPC streaming APIs with task fan-out broadcasting
- A "native" multi-core debugger REPL using `pdbp`_ (a fork & fix of
`pdb++`_ thanks to @mdmintz!)
- A (first ever?) "native" multi-core debugger UX for Python using `pdb++`_
- Support for a swappable, OS specific, process spawning layer
- A modular transport stack, allowing for custom serialization (eg. with
- A modular transport stack, allowing for custom serialization (eg.
`msgspec`_), communications protocols, and environment specific IPC
primitives
- Support for spawning process-level-SC, inter-loop one-to-one-task oriented
``asyncio`` actors via "infected ``asyncio``" mode
- `structured chadcurrency`_ from the ground up
- `structured concurrency`_ from the ground up
Run a func in a process
@ -156,7 +146,7 @@ it **is a bug**.
"Native" multi-process debugging
--------------------------------
Using the magic of `pdbp`_ and our internal IPC, we've
Using the magic of `pdb++`_ and our internal IPC, we've
been able to create a native feeling debugging experience for
any (sub-)process in your ``tractor`` tree.
@ -323,173 +313,9 @@ real time::
This uses no extra threads, fancy semaphores or futures; all we need
is ``tractor``'s IPC!
"Infected ``asyncio``" mode
---------------------------
Have a bunch of ``asyncio`` code you want to force to be SC at the process level?
Check out our experimental system for `guest-mode`_ controlled
``asyncio`` actors:
.. code:: python
import asyncio
from statistics import mean
import time
import trio
import tractor
async def aio_echo_server(
to_trio: trio.MemorySendChannel,
from_trio: asyncio.Queue,
) -> None:
# a first message must be sent **from** this ``asyncio``
# task or the ``trio`` side will never unblock from
# ``tractor.to_asyncio.open_channel_from():``
to_trio.send_nowait('start')
# XXX: this uses an ``from_trio: asyncio.Queue`` currently but we
# should probably offer something better.
while True:
# echo the msg back
to_trio.send_nowait(await from_trio.get())
await asyncio.sleep(0)
@tractor.context
async def trio_to_aio_echo_server(
ctx: tractor.Context,
):
# this will block until the ``asyncio`` task sends a "first"
# message.
async with tractor.to_asyncio.open_channel_from(
aio_echo_server,
) as (first, chan):
assert first == 'start'
await ctx.started(first)
async with ctx.open_stream() as stream:
async for msg in stream:
await chan.send(msg)
out = await chan.receive()
# echo back to parent actor-task
await stream.send(out)
async def main():
async with tractor.open_nursery() as n:
p = await n.start_actor(
'aio_server',
enable_modules=[__name__],
infect_asyncio=True,
)
async with p.open_context(
trio_to_aio_echo_server,
) as (ctx, first):
assert first == 'start'
count = 0
async with ctx.open_stream() as stream:
delays = []
send = time.time()
await stream.send(count)
async for msg in stream:
recv = time.time()
delays.append(recv - send)
assert msg == count
count += 1
send = time.time()
await stream.send(count)
if count >= 1e3:
break
print(f'mean round trip rate (Hz): {1/mean(delays)}')
await p.cancel_actor()
if __name__ == '__main__':
trio.run(main)
Yes, we spawn a python process, run ``asyncio``, start ``trio`` on the
``asyncio`` loop, then send commands to the ``trio`` scheduled tasks to
tell ``asyncio`` tasks what to do XD
We need help refining the `asyncio`-side channel API to be more
`trio`-like. Feel free to sling your opinion in `#273`_!
.. _#273: https://github.com/goodboy/tractor/issues/273
Higher level "cluster" APIs
---------------------------
To be extra terse the ``tractor`` devs have started hacking some "higher
level" APIs for managing actor trees/clusters. These interfaces should
generally be condsidered provisional for now but we encourage you to try
them and provide feedback. Here's a new API that let's you quickly
spawn a flat cluster:
.. code:: python
import trio
import tractor
async def sleepy_jane():
uid = tractor.current_actor().uid
print(f'Yo i am actor {uid}')
await trio.sleep_forever()
async def main():
'''
Spawn a flat actor cluster, with one process per
detected core.
'''
portal_map: dict[str, tractor.Portal]
results: dict[str, str]
# look at this hip new syntax!
async with (
tractor.open_actor_cluster(
modules=[__name__]
) as portal_map,
trio.open_nursery() as n,
):
for (name, portal) in portal_map.items():
n.start_soon(portal.run, sleepy_jane)
await trio.sleep(0.5)
# kill the cluster with a cancel
raise KeyboardInterrupt
if __name__ == '__main__':
try:
trio.run(main)
except KeyboardInterrupt:
pass
.. _full worker pool re-implementation: https://github.com/goodboy/tractor/blob/master/examples/parallelism/concurrent_actors_primes.py
Install
-------
From PyPi::
@ -497,6 +323,12 @@ From PyPi::
pip install tractor
To try out the (optionally) faster `msgspec`_ codec instead of the
default ``msgpack`` lib::
pip install tractor[msgspec]
From git::
pip install git+git://github.com/goodboy/tractor.git
@ -565,22 +397,13 @@ properties of the system.
What's on the TODO:
-------------------
Help us push toward the future of distributed `Python`.
Help us push toward the future.
- Erlang-style supervisors via composed context managers (see `#22
<https://github.com/goodboy/tractor/issues/22>`_)
- Typed messaging protocols (ex. via ``msgspec.Struct``, see `#36
- (Soon to land) ``asyncio`` support allowing for "infected" actors where
`trio` drives the `asyncio` scheduler via the astounding "`guest mode`_"
- Typed messaging protocols (ex. via ``msgspec``, see `#36
<https://github.com/goodboy/tractor/issues/36>`_)
- Typed capability-based (dialog) protocols ( see `#196
<https://github.com/goodboy/tractor/issues/196>`_ with draft work
started in `#311 <https://github.com/goodboy/tractor/pull/311>`_)
- We **recently disabled CI-testing on windows** and need help getting
it running again! (see `#327
<https://github.com/goodboy/tractor/pull/327>`_). **We do have windows
support** (and have for quite a while) but since no active hacker
exists in the user-base to help test on that OS, for now we're not
actively maintaining testing due to the added hassle and general
latency..
- Erlang-style supervisors via composed context managers
Feel like saying hi?
@ -592,32 +415,28 @@ say hi, please feel free to reach us in our `matrix channel`_. If
matrix seems too hip, we're also mostly all in the the `trio gitter
channel`_!
.. _structured concurrent: https://trio.discourse.group/t/concise-definition-of-structured-concurrency/228
.. _multi-processing: https://en.wikipedia.org/wiki/Multiprocessing
.. _trio: https://github.com/python-trio/trio
.. _nurseries: https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/#nurseries-a-structured-replacement-for-go-statements
.. _actor model: https://en.wikipedia.org/wiki/Actor_model
.. _trio: https://github.com/python-trio/trio
.. _multi-processing: https://en.wikipedia.org/wiki/Multiprocessing
.. _trionic: https://trio.readthedocs.io/en/latest/design.html#high-level-design-principles
.. _async sandwich: https://trio.readthedocs.io/en/latest/tutorial.html#async-sandwich
.. _structured concurrent: https://trio.discourse.group/t/concise-definition-of-structured-concurrency/228
.. _3 axioms: https://www.youtube.com/watch?v=7erJ1DV_Tlo&t=162s
.. .. _3 axioms: https://en.wikipedia.org/wiki/Actor_model#Fundamental_concepts
.. _adherance to: https://www.youtube.com/watch?v=7erJ1DV_Tlo&t=1821s
.. _trio gitter channel: https://gitter.im/python-trio/general
.. _matrix channel: https://matrix.to/#/!tractor:matrix.org
.. _pdbp: https://github.com/mdmintz/pdbp
.. _pdb++: https://github.com/pdbpp/pdbpp
.. _guest mode: https://trio.readthedocs.io/en/stable/reference-lowlevel.html?highlight=guest%20mode#using-guest-mode-to-run-trio-on-top-of-other-event-loops
.. _messages: https://en.wikipedia.org/wiki/Message_passing
.. _trio docs: https://trio.readthedocs.io/en/latest/
.. _blog post: https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
.. _structured concurrency: https://en.wikipedia.org/wiki/Structured_concurrency
.. _structured chadcurrency: https://en.wikipedia.org/wiki/Structured_concurrency
.. _structured concurrency: https://en.wikipedia.org/wiki/Structured_concurrency
.. _unrequirements: https://en.wikipedia.org/wiki/Actor_model#Direct_communication_and_asynchrony
.. _async generators: https://www.python.org/dev/peps/pep-0525/
.. _trio-parallel: https://github.com/richardsheridan/trio-parallel
.. _msgspec: https://jcristharif.com/msgspec/
.. _guest-mode: https://trio.readthedocs.io/en/stable/reference-lowlevel.html?highlight=guest%20mode#using-guest-mode-to-run-trio-on-top-of-other-event-loops
.. |gh_actions| image:: https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fgoodboy%2Ftractor%2Fbadge&style=popout-square

View File

@ -1,51 +0,0 @@
Hot tips for ``tractor`` hackers
================================
This is a WIP guide for newcomers to the project mostly to do with
dev, testing, CI and release gotchas, reminders and best practises.
``tractor`` is a fairly novel project compared to most since it is
effectively a new way of doing distributed computing in Python and is
much closer to working with an "application level runtime" (like erlang
OTP or scala's akka project) then it is a traditional Python library.
As such, having an arsenal of tools and recipes for figuring out the
right way to debug problems when they do arise is somewhat of
a necessity.
Making a Release
----------------
We currently do nothing special here except the traditional
PyPa release recipe as in `documented by twine`_. I personally
create sub-dirs within the generated `dist/` with an explicit
release name such as `alpha3/` when there's been a sequence of
releases I've made, but it really is up to you how you like to
organize generated sdists locally.
The resulting build cmds are approximately:
.. code:: bash
python setup.py sdist -d ./dist/XXX.X/
twine upload -r testpypi dist/XXX.X/*
twine upload dist/XXX.X/*
.. _documented by twine: https://twine.readthedocs.io/en/latest/#using-twine
Debugging and monitoring actor trees
------------------------------------
TODO: but there are tips in the readme for some terminal commands
which can be used to see the process trees easily on Linux.
Using the log system to trace `trio` task flow
----------------------------------------------
TODO: the logging system is meant to be oriented around
stack "layers" of the runtime such that you can track
"logical abstraction layers" in the code such as errors, cancellation,
IPC and streaming, and the low level transport and wire protocols.

View File

@ -396,7 +396,7 @@ tasks spawned via multiple RPC calls to an actor can modify
# a per process cache
_actor_cache: dict[str, bool] = {}
_actor_cache: Dict[str, bool] = {}
def ping_endpoints(endpoints: List[str]):

View File

View File

@ -1,151 +0,0 @@
'''
Complex edge case where during real-time streaming the IPC tranport
channels are wiped out (purposely in this example though it could have
been an outage) and we want to ensure that despite being in debug mode
(or not) the user can sent SIGINT once they notice the hang and the
actor tree will eventually be cancelled without leaving any zombies.
'''
import trio
from tractor import (
open_nursery,
context,
Context,
MsgStream,
)
async def break_channel_silently_then_error(
stream: MsgStream,
):
async for msg in stream:
await stream.send(msg)
# XXX: close the channel right after an error is raised
# purposely breaking the IPC transport to make sure the parent
# doesn't get stuck in debug or hang on the connection join.
# this more or less simulates an infinite msg-receive hang on
# the other end.
await stream._ctx.chan.send(None)
assert 0
async def close_stream_and_error(
stream: MsgStream,
):
async for msg in stream:
await stream.send(msg)
# wipe out channel right before raising
await stream._ctx.chan.send(None)
await stream.aclose()
assert 0
@context
async def recv_and_spawn_net_killers(
ctx: Context,
break_ipc_after: bool | int = False,
) -> None:
'''
Receive stream msgs and spawn some IPC killers mid-stream.
'''
await ctx.started()
async with (
ctx.open_stream() as stream,
trio.open_nursery() as n,
):
async for i in stream:
print(f'child echoing {i}')
await stream.send(i)
if (
break_ipc_after
and i > break_ipc_after
):
'#################################\n'
'Simulating child-side IPC BREAK!\n'
'#################################'
n.start_soon(break_channel_silently_then_error, stream)
n.start_soon(close_stream_and_error, stream)
async def main(
debug_mode: bool = False,
start_method: str = 'trio',
# by default we break the parent IPC first (if configured to break
# at all), but this can be changed so the child does first (even if
# both are set to break).
break_parent_ipc_after: int | bool = False,
break_child_ipc_after: int | bool = False,
) -> None:
async with (
open_nursery(
start_method=start_method,
# NOTE: even debugger is used we shouldn't get
# a hang since it never engages due to broken IPC
debug_mode=debug_mode,
loglevel='warning',
) as an,
):
portal = await an.start_actor(
'chitty_hijo',
enable_modules=[__name__],
)
async with portal.open_context(
recv_and_spawn_net_killers,
break_ipc_after=break_child_ipc_after,
) as (ctx, sent):
async with ctx.open_stream() as stream:
for i in range(1000):
if (
break_parent_ipc_after
and i > break_parent_ipc_after
):
print(
'#################################\n'
'Simulating parent-side IPC BREAK!\n'
'#################################'
)
await stream._ctx.chan.send(None)
# it actually breaks right here in the
# mp_spawn/forkserver backends and thus the zombie
# reaper never even kicks in?
print(f'parent sending {i}')
await stream.send(i)
with trio.move_on_after(2) as cs:
# NOTE: in the parent side IPC failure case this
# will raise an ``EndOfChannel`` after the child
# is killed and sends a stop msg back to it's
# caller/this-parent.
rx = await stream.receive()
print(f"I'm a happy user and echoed to me is {rx}")
if cs.cancelled_caught:
# pretend to be a user seeing no streaming action
# thinking it's a hang, and then hitting ctl-c..
print("YOO i'm a user anddd thingz hangin..")
print(
"YOO i'm mad send side dun but thingz hangin..\n"
'MASHING CTlR-C Ctl-c..'
)
raise KeyboardInterrupt
if __name__ == '__main__':
trio.run(main)

View File

@ -27,17 +27,6 @@ async def main():
# retreive results
async with p0.open_stream_from(breakpoint_forever) as stream:
# triggers the first name error
try:
await p1.run(name_error)
except tractor.RemoteActorError as rae:
assert rae.type is NameError
async for i in stream:
# a second time try the failing subactor and this tie
# let error propagate up to the parent/nursery.
await p1.run(name_error)

View File

@ -12,31 +12,18 @@ async def breakpoint_forever():
while True:
await tractor.breakpoint()
# NOTE: if the test never sent 'q'/'quit' commands
# on the pdb repl, without this checkpoint line the
# repl would spin in this actor forever.
# await trio.sleep(0)
async def spawn_until(depth=0):
""""A nested nursery that triggers another ``NameError``.
"""
async with tractor.open_nursery() as n:
if depth < 1:
await n.run_in_actor(breakpoint_forever)
p = await n.run_in_actor(
# await n.run_in_actor('breakpoint_forever', breakpoint_forever)
await n.run_in_actor(
name_error,
name='name_error'
)
await trio.sleep(0.5)
# rx and propagate error from child
await p.result()
else:
# recusrive call to spawn another process branching layer of
# the tree
depth -= 1
await n.run_in_actor(
spawn_until,
@ -66,7 +53,6 @@ async def main():
"""
async with tractor.open_nursery(
debug_mode=True,
# loglevel='cancel',
) as n:
# spawn both actors
@ -81,16 +67,8 @@ async def main():
name='spawner1',
)
# TODO: test this case as well where the parent don't see
# the sub-actor errors by default and instead expect a user
# ctrl-c to kill the root.
with trio.move_on_after(3):
await trio.sleep_forever()
# gah still an issue here.
await portal.result()
# should never get here
await portal1.result()

View File

@ -1,8 +1,3 @@
'''
Test that a nested nursery will avoid clobbering
the debugger latched by a broken child.
'''
import trio
import tractor
@ -40,7 +35,6 @@ async def main():
"""
async with tractor.open_nursery(
debug_mode=True,
# loglevel='cancel',
) as n:
# spawn both actors

View File

@ -1,40 +0,0 @@
import trio
import tractor
@tractor.context
async def just_sleep(
ctx: tractor.Context,
**kwargs,
) -> None:
'''
Start and sleep.
'''
await ctx.started()
await trio.sleep_forever()
async def main() -> None:
async with tractor.open_nursery(
debug_mode=True,
) as n:
portal = await n.start_actor(
'ctx_child',
# XXX: we don't enable the current module in order
# to trigger `ModuleNotFound`.
enable_modules=[],
)
async with portal.open_context(
just_sleep, # taken from pytest parameterization
) as (ctx, sent):
raise KeyboardInterrupt
if __name__ == '__main__':
trio.run(main)

View File

@ -1,27 +0,0 @@
import trio
import tractor
async def die():
raise RuntimeError
async def main():
async with tractor.open_nursery() as tn:
debug_actor = await tn.start_actor(
'debugged_boi',
enable_modules=[__name__],
debug_mode=True,
)
crash_boi = await tn.start_actor(
'crash_boi',
enable_modules=[__name__],
# debug_mode=True,
)
async with trio.open_nursery() as n:
n.start_soon(debug_actor.run, die)
n.start_soon(crash_boi.run, die)
if __name__ == '__main__':
trio.run(main)

View File

@ -1,24 +0,0 @@
import os
import sys
import trio
import tractor
async def main() -> None:
async with tractor.open_nursery(debug_mode=True) as an:
assert os.environ['PYTHONBREAKPOINT'] == 'tractor._debug._set_trace'
# TODO: an assert that verifies the hook has indeed been, hooked
# XD
assert sys.breakpointhook is not tractor._debug._set_trace
breakpoint()
# TODO: an assert that verifies the hook is unhooked..
assert sys.breakpointhook
breakpoint()
if __name__ == '__main__':
trio.run(main)

View File

@ -1,50 +0,0 @@
import tractor
import trio
async def gen():
yield 'yo'
await tractor.breakpoint()
yield 'yo'
await tractor.breakpoint()
@tractor.context
async def just_bp(
ctx: tractor.Context,
) -> None:
await ctx.started()
await tractor.breakpoint()
# TODO: bps and errors in this call..
async for val in gen():
print(val)
# await trio.sleep(0.5)
# prematurely destroy the connection
await ctx.chan.aclose()
# THIS CAUSES AN UNRECOVERABLE HANG
# without latest ``pdbpp``:
assert 0
async def main():
async with tractor.open_nursery(
debug_mode=True,
) as n:
p = await n.start_actor(
'bp_boi',
enable_modules=[__name__],
)
async with p.open_context(
just_bp,
) as (ctx, first):
await trio.sleep_forever()
if __name__ == '__main__':
trio.run(main)

View File

@ -7,7 +7,7 @@ import tractor
async def stream_data(seed):
for i in range(seed):
yield i
await trio.sleep(0.0001) # trigger scheduler
await trio.sleep(0) # trigger scheduler
# this is the third actor; the aggregator

View File

@ -1,92 +0,0 @@
'''
An SC compliant infected ``asyncio`` echo server.
'''
import asyncio
from statistics import mean
import time
import trio
import tractor
async def aio_echo_server(
to_trio: trio.MemorySendChannel,
from_trio: asyncio.Queue,
) -> None:
# a first message must be sent **from** this ``asyncio``
# task or the ``trio`` side will never unblock from
# ``tractor.to_asyncio.open_channel_from():``
to_trio.send_nowait('start')
# XXX: this uses an ``from_trio: asyncio.Queue`` currently but we
# should probably offer something better.
while True:
# echo the msg back
to_trio.send_nowait(await from_trio.get())
await asyncio.sleep(0)
@tractor.context
async def trio_to_aio_echo_server(
ctx: tractor.Context,
):
# this will block until the ``asyncio`` task sends a "first"
# message.
async with tractor.to_asyncio.open_channel_from(
aio_echo_server,
) as (first, chan):
assert first == 'start'
await ctx.started(first)
async with ctx.open_stream() as stream:
async for msg in stream:
await chan.send(msg)
out = await chan.receive()
# echo back to parent actor-task
await stream.send(out)
async def main():
async with tractor.open_nursery() as n:
p = await n.start_actor(
'aio_server',
enable_modules=[__name__],
infect_asyncio=True,
)
async with p.open_context(
trio_to_aio_echo_server,
) as (ctx, first):
assert first == 'start'
count = 0
async with ctx.open_stream() as stream:
delays = []
send = time.time()
await stream.send(count)
async for msg in stream:
recv = time.time()
delays.append(recv - send)
assert msg == count
count += 1
send = time.time()
await stream.send(count)
if count >= 1e3:
break
print(f'mean round trip rate (Hz): {1/mean(delays)}')
await p.cancel_actor()
if __name__ == '__main__':
trio.run(main)

View File

@ -1,49 +0,0 @@
import trio
import click
import tractor
import pydantic
# from multiprocessing import shared_memory
@tractor.context
async def just_sleep(
ctx: tractor.Context,
**kwargs,
) -> None:
'''
Test a small ping-pong 2-way streaming server.
'''
await ctx.started()
await trio.sleep_forever()
async def main() -> None:
proc = await trio.open_process( (
'python',
'-c',
'import trio; trio.run(trio.sleep_forever)',
))
await proc.wait()
# await trio.sleep_forever()
# async with tractor.open_nursery() as n:
# portal = await n.start_actor(
# 'rpc_server',
# enable_modules=[__name__],
# )
# async with portal.open_context(
# just_sleep, # taken from pytest parameterization
# ) as (ctx, sent):
# await trio.sleep_forever()
if __name__ == '__main__':
import time
# time.sleep(999)
trio.run(main)

View File

@ -9,7 +9,7 @@ is ``tractor``'s channels.
"""
from contextlib import asynccontextmanager
from typing import Callable
from typing import List, Callable
import itertools
import math
import time
@ -71,8 +71,8 @@ async def worker_pool(workers=4):
async def _map(
worker_func: Callable[[int], bool],
sequence: list[int]
) -> list[bool]:
sequence: List[int]
) -> List[bool]:
# define an async (local) task to collect results from workers
async def send_result(func, value, portal):

View File

@ -1,44 +0,0 @@
import trio
import tractor
async def sleepy_jane():
uid = tractor.current_actor().uid
print(f'Yo i am actor {uid}')
await trio.sleep_forever()
async def main():
'''
Spawn a flat actor cluster, with one process per
detected core.
'''
portal_map: dict[str, tractor.Portal]
results: dict[str, str]
# look at this hip new syntax!
async with (
tractor.open_actor_cluster(
modules=[__name__]
) as portal_map,
trio.open_nursery() as n,
):
for (name, portal) in portal_map.items():
n.start_soon(portal.run, sleepy_jane)
await trio.sleep(0.5)
# kill the cluster with a cancel
raise KeyboardInterrupt
if __name__ == '__main__':
try:
trio.run(main)
except KeyboardInterrupt:
pass

View File

@ -0,0 +1,4 @@
Switch to using the ``trio`` process spawner by default on windows.
This gets windows users debugger support (manually tested) and in
general a more resilient (nested) actor tree implementation.

View File

@ -0,0 +1,9 @@
Add optional `msgspec <https://jcristharif.com/msgspec/>`_ support over
TCP streams as an alernative, faster MessagePack codec.
This get's us moving toward typed messaging/IPC protocols. Further,
``msgspec`` structs may be a valid tool to start for formalizing our "SC
dialog un-protocol" messages as described in `#36
<https://github.com/goodboy/tractor/issues/36>`_`.

View File

@ -0,0 +1,6 @@
Fix keyboard interrupt handling in ``Portal.open_context()`` blocks.
Previously this not triggering cancellation of the remote task context
and could result in hangs if a stream was also opened. This fix is to
accept `BaseException` since it is likely any other top level exception
other then kbi (even though not expected) should also get this result.

View File

@ -4,5 +4,5 @@ now and use the default `fragment set`_.
.. _towncrier docs: https://github.com/twisted/towncrier#quick-start
.. _pluggy release readme: https://github.com/pytest-dev/pluggy/blob/main/changelog/README.rst
.. _pluggy release readme: https://github.com/twisted/towncrier#quick-start
.. _fragment set: https://github.com/twisted/towncrier#news-fragments

View File

@ -1,16 +0,0 @@
Strictly support Python 3.10+, start runtime machinery reorg
Since we want to push forward using the new `match:` syntax for our
internal RPC-msg loops, we officially drop 3.9 support for the next
release which should coincide well with the first release of 3.11.
This patch set also officially removes the ``tractor.run()`` API (which
has been deprecated for some time) as well as starts an initial re-org
of the internal runtime core by:
- renaming ``tractor._actor`` -> ``._runtime``
- moving the ``._runtime.ActorActor._process_messages()`` and
``._async_main()`` to be module level singleton-task-functions since
they are only started once for each connection and actor spawn
respectively; this internal API thus looks more similar to (at the
time of writing) the ``trio``-internals in ``trio._core._run``.
- officially remove ``tractor.run()``, now deprecated for some time.

View File

@ -1,4 +0,0 @@
Only set `._debug.Lock.local_pdb_complete` if has been created.
This can be triggered by a very rare race condition (and thus we have no
working test yet) but it is known to exist in (a) consumer project(s).

View File

@ -1,25 +0,0 @@
Add support for ``trio >= 0.22`` and support for the new Python 3.11
``[Base]ExceptionGroup`` from `pep 654`_ via the backported
`exceptiongroup`_ package and some final fixes to the debug mode
subsystem.
This port ended up driving some (hopefully) final fixes to our debugger
subsystem including the solution to all lingering stdstreams locking
race-conditions and deadlock scenarios. This includes extending the
debugger tests suite as well as cancellation and ``asyncio`` mode cases.
Some of the notable details:
- always reverting to the ``trio`` SIGINT handler when leaving debug
mode.
- bypassing child attempts to acquire the debug lock when detected
to be amdist actor-runtime-cancellation.
- allowing the root actor to cancel local but IPC-stale subactor
requests-tasks for the debug lock when in a "no IPC peers" state.
Further we refined our ``ActorNursery`` semantics to be more similar to
``trio`` in the sense that parent task errors are always packed into the
actor-nursery emitted exception group and adjusted all tests and
examples accordingly.
.. _pep 654: https://peps.python.org/pep-0654/#handling-exception-groups
.. _exceptiongroup: https://github.com/python-trio/exceptiongroup

View File

@ -1,5 +0,0 @@
Establish an explicit "backend spawning" method table; use it from CI
More clearly lays out the current set of (3) backends: ``['trio',
'mp_spawn', 'mp_forkserver']`` and adjusts the ``._spawn.py`` internals
as well as the test suite to accommodate.

View File

@ -1,4 +0,0 @@
Add ``key: Callable[..., Hashable]`` support to ``.trionics.maybe_open_context()``
Gives users finer grained control over cache hit behaviour using
a callable which receives the input ``kwargs: dict``.

View File

@ -1,41 +0,0 @@
Add support for debug-lock blocking using a ``._debug.Lock._blocked:
set[tuple]`` and add ids when no-more IPC connections with the
root actor are detected.
This is an enhancement which (mostly) solves a lingering debugger
locking race case we needed to handle:
- child crashes acquires TTY lock in root and attaches to ``pdb``
- child IPC goes down such that all channels to the root are broken
/ non-functional.
- root is stuck thinking the child is still in debug even though it
can't be contacted and the child actor machinery hasn't been
cancelled by its parent.
- root get's stuck in deadlock with child since it won't send a cancel
request until the child is finished debugging (to avoid clobbering
a child that is actually using the debugger), but the child can't
unlock the debugger bc IPC is down and it can't contact the root.
To avoid this scenario add debug lock blocking list via
`._debug.Lock._blocked: set[tuple]` which holds actor uids for any actor
that is detected by the root as having no transport channel connections
(of which at least one should exist if this sub-actor at some point
acquired the debug lock). The root consequently checks this list for any
actor that tries to (re)acquire the lock and blocks with
a ``ContextCancelled``. Further, when a debug condition is tested in
``._runtime._invoke``, the context's ``._enter_debugger_on_cancel`` is
set to `False` if the actor was put on the block list then all
post-mortem / crash handling will be bypassed for that task.
In theory this approach to block list management may cause problems
where some nested child actor acquires and releases the lock multiple
times and it gets stuck on the block list after the first use? If this
turns out to be an issue we can try changing the strat so blocks are
only added when the root has zero IPC peers left?
Further, this adds a root-locking-task side cancel scope,
``Lock._root_local_task_cs_in_debug``, which can be ``.cancel()``-ed by the root
runtime when a stale lock is detected during the IPC channel testing.
However, right now we're NOT using this since it seems to cause test
failures likely due to causing pre-mature cancellation and maybe needs
a bit more experimenting?

View File

@ -1,19 +0,0 @@
Rework our ``.trionics.BroadcastReceiver`` internals to avoid method
recursion and approach a design and interface closer to ``trio``'s
``MemoryReceiveChannel``.
The details of the internal changes include:
- implementing a ``BroadcastReceiver.receive_nowait()`` and using it
within the async ``.receive()`` thus avoiding recursion from
``.receive()``.
- failing over to an internal ``._receive_from_underlying()`` when the
``_nowait()`` call raises ``trio.WouldBlock``
- adding ``BroadcastState.statistics()`` for debugging and testing both
internals and by users.
- add an internal ``BroadcastReceiver._raise_on_lag: bool`` which can be
set to avoid ``Lagged`` raising for possible use cases where a user
wants to choose between a [cheap or nasty
pattern](https://zguide.zeromq.org/docs/chapter7/#The-Cheap-or-Nasty-Pattern)
the the particular stream (we use this in ``piker``'s dark clearing
engine to avoid fast feeds breaking during HFT periods).

View File

@ -1,11 +0,0 @@
Always ``list``-cast the ``mngrs`` input to
``.trionics.gather_contexts()`` and ensure its size otherwise raise
a ``ValueError``.
Turns out that trying to pass an inline-style generator comprehension
doesn't seem to work inside the ``async with`` expression? Further, in
such a case we can get a hang waiting on the all-entered event
completion when the internal mngrs iteration is a noop. Instead we
always greedily check a size and error on empty input; the lazy
iteration of a generator input is not beneficial anyway since we're
entering all manager instances in concurrent tasks.

View File

@ -1,15 +0,0 @@
Fixes to ensure IPC (channel) breakage doesn't result in hung actor
trees; the zombie reaping and general supervision machinery will always
clean up and terminate.
This includes not only the (mostly minor) fixes to solve these cases but
also a new extensive test suite in `test_advanced_faults.py` with an
accompanying highly configurable example module-script in
`examples/advanced_faults/ipc_failure_during_stream.py`. Tests ensure we
never get hang or zombies despite operating in debug mode and attempt to
simulate all possible IPC transport failure cases for a local-host actor
tree.
Further we simplify `Context.open_stream.__aexit__()` to just call
`MsgStream.aclose()` directly more or less avoiding a pure duplicate
code path.

View File

@ -1,10 +0,0 @@
Always redraw the `pdbpp` prompt on `SIGINT` during REPL use.
There was recent changes todo with Python 3.10 that required us to pin
to a specific commit in `pdbpp` which have recently been fixed minus
this last issue with `SIGINT` shielding: not clobbering or not
showing the `(Pdb++)` prompt on ctlr-c by the user. This repairs all
that by firstly removing the standard KBI intercepting of the std lib's
`pdb.Pdb._cmdloop()` as well as ensuring that only the actor with REPL
control ever reports `SIGINT` handler log msgs and prompt redraws. With
this we move back to using pypi `pdbpp` release.

View File

@ -1,7 +0,0 @@
Drop `trio.Process.aclose()` usage, copy into our spawning code.
The details are laid out in https://github.com/goodboy/tractor/issues/330.
`trio` changed is process running quite some time ago, this just copies
out the small bit we needed (from the old `.aclose()`) for hard kills
where a soft runtime cancel request fails and our "zombie killer"
implementation kicks in.

View File

@ -1,15 +0,0 @@
Switch to using the fork & fix of `pdb++`, `pdbp`:
https://github.com/mdmintz/pdbp
Allows us to sidestep a variety of issues that aren't being maintained
in the upstream project thanks to the hard work of @mdmintz!
We also include some default settings adjustments as per recent
development on the fork:
- sticky mode is still turned on by default but now activates when
a using the `ll` repl command.
- turn off line truncation by default to avoid inter-line gaps when
resizing the terimnal during use.
- when using the backtrace cmd either by `w` or `bt`, the config
automatically switches to non-sticky mode.

View File

@ -1,37 +0,0 @@
{% for section in sections %}
{% set underline = "-" %}
{% if section %}
{{section}}
{{ underline * section|length }}{% set underline = "~" %}
{% endif %}
{% if sections[section] %}
{% for category, val in definitions.items() if category in sections[section] %}
{{ definitions[category]['name'] }}
{{ underline * definitions[category]['name']|length }}
{% if definitions[category]['showcontent'] %}
{% for text, values in sections[section][category]|dictsort(by='value') %}
{% set issue_joiner = joiner(', ') %}
- {% for value in values|sort %}{{ issue_joiner() }}`{{ value }} <https://github.com/goodboy/tractor/issues/{{ value[1:] }}>`_{% endfor %}: {{ text }}
{% endfor %}
{% else %}
- {{ sections[section][category]['']|sort|join(', ') }}
{% endif %}
{% if sections[section][category]|length == 0 %}
No significant changes.
{% else %}
{% endif %}
{% endfor %}
{% else %}
No significant changes.
{% endif %}
{% endfor %}

View File

@ -1,28 +0,0 @@
[tool.towncrier]
package = "tractor"
filename = "NEWS.rst"
directory = "nooz/"
version = "0.1.0a6"
title_format = "tractor {version} ({project_date})"
template = "nooz/_template.rst"
all_bullets = true
[[tool.towncrier.type]]
directory = "feature"
name = "Features"
showcontent = true
[[tool.towncrier.type]]
directory = "bugfix"
name = "Bug Fixes"
showcontent = true
[[tool.towncrier.type]]
directory = "doc"
name = "Improved Documentation"
showcontent = true
[[tool.towncrier.type]]
directory = "trivial"
name = "Trivial/Internal Changes"
showcontent = true

View File

@ -1,8 +1,6 @@
pytest
pytest-trio
pytest-timeout
pdbp
pdbpp
mypy
trio_typing
pexpect
towncrier

View File

@ -1,22 +1,21 @@
#!/usr/bin/env python
#
# tractor: structured concurrent "actors".
# tractor: a trionic actor model built on `multiprocessing` and `trio`
#
# Copyright 2018-eternity Tyler Goodlet.
# Copyright (C) 2018-2020 Tyler Goodlet
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from setuptools import setup
with open('docs/README.rst', encoding='utf-8') as f:
@ -25,62 +24,53 @@ with open('docs/README.rst', encoding='utf-8') as f:
setup(
name="tractor",
version='0.1.0a6dev0', # alpha zone
description='structured concurrrent `trio`-"actors"',
version='0.1.0a3.dev0', # alpha zone
description='structured concurrrent "actors"',
long_description=readme,
license='AGPLv3',
license='GPLv3',
author='Tyler Goodlet',
maintainer='Tyler Goodlet',
maintainer_email='goodboy_foss@protonmail.com',
maintainer_email='jgbt@protonmail.com',
url='https://github.com/goodboy/tractor',
platforms=['linux', 'windows'],
packages=[
'tractor',
'tractor.experimental',
'tractor.trionics',
'tractor.testing',
],
install_requires=[
# trio related
# proper range spec:
# https://packaging.python.org/en/latest/discussions/install-requires-vs-requirements/#id5
'trio >= 0.22',
'trio>0.8',
'async_generator',
'trio_typing',
'exceptiongroup',
# tooling
'tricycle',
'trio_typing',
# tooling
'colorlog',
'wrapt',
'pdbpp',
# IPC serialization
'msgspec',
# debug mode REPL
'pdbp',
# pip ref docs on these specs:
# https://pip.pypa.io/en/stable/reference/requirement-specifiers/#examples
# and pep:
# https://peps.python.org/pep-0440/#version-specifiers
# windows deps workaround for ``pdbpp``
# https://github.com/pdbpp/pdbpp/issues/498
# https://github.com/pdbpp/fancycompleter/issues/37
'pyreadline3 ; platform_system == "Windows"',
# serialization
'msgpack',
],
extras_require={
# serialization
'msgspec': ["msgspec >= 0.3.2'; python_version >= '3.9'"],
},
tests_require=['pytest'],
python_requires=">=3.10",
python_requires=">=3.8",
keywords=[
'trio',
'async',
'concurrency',
'structured concurrency',
'actor model',
'distributed',
"async",
"concurrency",
"actor model",
"distributed",
'multiprocessing'
],
classifiers=[
@ -88,10 +78,11 @@ setup(
"Operating System :: POSIX :: Linux",
"Operating System :: Microsoft :: Windows",
"Framework :: Trio",
"License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
"License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Topic :: System :: Distributed Computing",

View File

@ -7,91 +7,16 @@ import os
import random
import signal
import platform
import pathlib
import time
import inspect
from functools import partial, wraps
import pytest
import trio
import tractor
# export for tests
from tractor.testing import tractor_test # noqa
pytest_plugins = ['pytester']
def tractor_test(fn):
"""
Use:
@tractor_test
async def test_whatever():
await ...
If fixtures:
- ``arb_addr`` (a socket addr tuple where arbiter is listening)
- ``loglevel`` (logging level passed to tractor internals)
- ``start_method`` (subprocess spawning backend)
are defined in the `pytest` fixture space they will be automatically
injected to tests declaring these funcargs.
"""
@wraps(fn)
def wrapper(
*args,
loglevel=None,
arb_addr=None,
start_method=None,
**kwargs
):
# __tracebackhide__ = True
if 'arb_addr' in inspect.signature(fn).parameters:
# injects test suite fixture value to test as well
# as `run()`
kwargs['arb_addr'] = arb_addr
if 'loglevel' in inspect.signature(fn).parameters:
# allows test suites to define a 'loglevel' fixture
# that activates the internal logging
kwargs['loglevel'] = loglevel
if start_method is None:
if platform.system() == "Windows":
start_method = 'trio'
if 'start_method' in inspect.signature(fn).parameters:
# set of subprocess spawning backends
kwargs['start_method'] = start_method
if kwargs:
# use explicit root actor start
async def _main():
async with tractor.open_root_actor(
# **kwargs,
arbiter_addr=arb_addr,
loglevel=loglevel,
start_method=start_method,
# TODO: only enable when pytest is passed --pdb
# debug_mode=True,
):
await fn(*args, **kwargs)
main = _main
else:
# use implicit root actor start
main = partial(fn, *args, **kwargs)
return trio.run(main)
return wrapper
_arb_addr = '127.0.0.1', random.randint(1000, 9999)
@ -114,27 +39,20 @@ no_windows = pytest.mark.skipif(
)
def repodir() -> pathlib.Path:
'''
Return the abspath to the repo directory.
'''
# 2 parents up to step up through tests/<repo_dir>
return pathlib.Path(__file__).parent.parent.absolute()
def examples_dir() -> pathlib.Path:
'''
Return the abspath to the examples directory as `pathlib.Path`.
'''
return repodir() / 'examples'
def repodir():
"""Return the abspath to the repo directory.
"""
dirname = os.path.dirname
dirpath = os.path.abspath(
dirname(dirname(os.path.realpath(__file__)))
)
return dirpath
def pytest_addoption(parser):
parser.addoption(
"--ll", action="store", dest='loglevel',
default='ERROR', help="logging level to set when testing"
default=None, help="logging level to set when testing"
)
parser.addoption(
@ -146,31 +64,39 @@ def pytest_addoption(parser):
def pytest_configure(config):
backend = config.option.spawn_backend
if backend == 'mp':
tractor._spawn.try_set_start_method('spawn')
elif backend == 'trio':
tractor._spawn.try_set_start_method(backend)
@pytest.fixture(scope='session', autouse=True)
def loglevel(request):
orig = tractor.log._default_loglevel
level = tractor.log._default_loglevel = request.config.option.loglevel
tractor.log.get_console_log(level)
level_from_cli = request.config.option.loglevel
# disable built-in capture when user passes the `--ll` value
# presuming they already know they want to see console logging
# and don't need it repeated by pytest.
if level_from_cli:
request.config.option.showcapture = 'no'
level = tractor.log._default_loglevel = level_from_cli
yield level
tractor.log._default_loglevel = orig
@pytest.fixture(scope='session')
def spawn_backend(request) -> str:
def spawn_backend(request):
return request.config.option.spawn_backend
_ci_env: bool = os.environ.get('CI', False)
@pytest.fixture(scope='session')
def ci_env() -> bool:
"""Detect CI envoirment.
"""
return _ci_env
return os.environ.get('TRAVIS', False) or os.environ.get('CI', False)
@pytest.fixture(scope='session')
@ -180,24 +106,24 @@ def arb_addr():
def pytest_generate_tests(metafunc):
spawn_backend = metafunc.config.option.spawn_backend
if not spawn_backend:
# XXX some weird windows bug with `pytest`?
spawn_backend = 'trio'
spawn_backend = 'mp'
assert spawn_backend in ('mp', 'trio')
# TODO: maybe just use the literal `._spawn.SpawnMethodKey`?
assert spawn_backend in (
'mp_spawn',
'mp_forkserver',
'trio',
)
# NOTE: used to be used to dyanmically parametrize tests for when
# you just passed --spawn-backend=`mp` on the cli, but now we expect
# that cli input to be manually specified, BUT, maybe we'll do
# something like this again in the future?
if 'start_method' in metafunc.fixturenames:
metafunc.parametrize("start_method", [spawn_backend], scope='module')
if spawn_backend == 'mp':
from multiprocessing import get_all_start_methods
methods = get_all_start_methods()
if 'fork' in methods:
# fork not available on windows, so check before
# removing XXX: the fork method is in general
# incompatible with trio's global scheduler state
methods.remove('fork')
elif spawn_backend == 'trio':
methods = ['trio']
metafunc.parametrize("start_method", methods, scope='module')
def sig_prog(proc, sig):
@ -213,22 +139,16 @@ def sig_prog(proc, sig):
@pytest.fixture
def daemon(
loglevel: str,
testdir,
arb_addr: tuple[str, int],
):
'''
Run a daemon actor as a "remote arbiter".
'''
def daemon(loglevel, testdir, arb_addr):
"""Run a daemon actor as a "remote arbiter".
"""
if loglevel in ('trace', 'debug'):
# too much logging will lock up the subproc (smh)
loglevel = 'info'
cmdargs = [
sys.executable, '-c',
"import tractor; tractor.run_daemon([], registry_addr={}, loglevel={})"
"import tractor; tractor.run_daemon([], arbiter_addr={}, loglevel={})"
.format(
arb_addr,
"'{}'".format(loglevel) if loglevel else None)

View File

@ -1,11 +1,417 @@
"""
Bidirectional streaming.
Bidirectional streaming and context API.
"""
import platform
import pytest
import trio
import tractor
from conftest import tractor_test
# the general stream semantics are
# - normal termination: far end relays a stop message which
# terminates an ongoing ``MsgStream`` iteration
# - cancel termination: context is cancelled on either side cancelling
# the "linked" inter-actor task context
_state: bool = False
@tractor.context
async def simple_setup_teardown(
ctx: tractor.Context,
data: int,
block_forever: bool = False,
) -> None:
# startup phase
global _state
_state = True
# signal to parent that we're up
await ctx.started(data + 1)
try:
if block_forever:
# block until cancelled
await trio.sleep_forever()
else:
return 'yo'
finally:
_state = False
async def assert_state(value: bool):
global _state
assert _state == value
@pytest.mark.parametrize(
'error_parent',
[False, ValueError, KeyboardInterrupt],
)
@pytest.mark.parametrize(
'callee_blocks_forever',
[False, True],
ids=lambda item: f'callee_blocks_forever={item}'
)
@pytest.mark.parametrize(
'pointlessly_open_stream',
[False, True],
ids=lambda item: f'open_stream={item}'
)
def test_simple_context(
error_parent,
callee_blocks_forever,
pointlessly_open_stream,
):
timeout = 1.5 if not platform.system() == 'Windows' else 3
async def main():
with trio.fail_after(timeout):
async with tractor.open_nursery() as nursery:
portal = await nursery.start_actor(
'simple_context',
enable_modules=[__name__],
)
try:
async with portal.open_context(
simple_setup_teardown,
data=10,
block_forever=callee_blocks_forever,
) as (ctx, sent):
assert sent == 11
if callee_blocks_forever:
await portal.run(assert_state, value=True)
else:
assert await ctx.result() == 'yo'
if not error_parent:
await ctx.cancel()
if pointlessly_open_stream:
async with ctx.open_stream():
if error_parent:
raise error_parent
if callee_blocks_forever:
await ctx.cancel()
else:
# in this case the stream will send a
# 'stop' msg to the far end which needs
# to be ignored
pass
else:
if error_parent:
raise error_parent
finally:
# after cancellation
if not error_parent:
await portal.run(assert_state, value=False)
# shut down daemon
await portal.cancel_actor()
if error_parent:
try:
trio.run(main)
except error_parent:
pass
except trio.MultiError as me:
# XXX: on windows it seems we may have to expect the group error
from tractor._exceptions import is_multi_cancelled
assert is_multi_cancelled(me)
else:
trio.run(main)
# basic stream terminations:
# - callee context closes without using stream
# - caller context closes without using stream
# - caller context calls `Context.cancel()` while streaming
# is ongoing resulting in callee being cancelled
# - callee calls `Context.cancel()` while streaming and caller
# sees stream terminated in `RemoteActorError`
# TODO: future possible features
# - restart request: far end raises `ContextRestart`
@tractor.context
async def close_ctx_immediately(
ctx: tractor.Context,
) -> None:
await ctx.started()
global _state
async with ctx.open_stream():
pass
@tractor_test
async def test_callee_closes_ctx_after_stream_open():
'callee context closes without using stream'
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'fast_stream_closer',
enable_modules=[__name__],
)
async with portal.open_context(
close_ctx_immediately,
# flag to avoid waiting the final result
# cancel_on_exit=True,
) as (ctx, sent):
assert sent is None
with trio.fail_after(0.5):
async with ctx.open_stream() as stream:
# should fall through since ``StopAsyncIteration``
# should be raised through translation of
# a ``trio.EndOfChannel`` by
# ``trio.abc.ReceiveChannel.__anext__()``
async for _ in stream:
assert 0
else:
# verify stream is now closed
try:
await stream.receive()
except trio.EndOfChannel:
pass
# TODO: should be just raise the closed resource err
# directly here to enforce not allowing a re-open
# of a stream to the context (at least until a time of
# if/when we decide that's a good idea?)
try:
async with ctx.open_stream() as stream:
pass
except trio.ClosedResourceError:
pass
await portal.cancel_actor()
@tractor.context
async def expect_cancelled(
ctx: tractor.Context,
) -> None:
global _state
_state = True
await ctx.started()
try:
async with ctx.open_stream() as stream:
async for msg in stream:
await stream.send(msg) # echo server
except trio.Cancelled:
# expected case
_state = False
raise
else:
assert 0, "Wasn't cancelled!?"
@pytest.mark.parametrize(
'use_ctx_cancel_method',
[False, True],
)
@tractor_test
async def test_caller_closes_ctx_after_callee_opens_stream(
use_ctx_cancel_method: bool,
):
'caller context closes without using stream'
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'ctx_cancelled',
enable_modules=[__name__],
)
async with portal.open_context(
expect_cancelled,
) as (ctx, sent):
await portal.run(assert_state, value=True)
assert sent is None
# call cancel explicitly
if use_ctx_cancel_method:
await ctx.cancel()
try:
async with ctx.open_stream() as stream:
async for msg in stream:
pass
except tractor.ContextCancelled:
raise # XXX: must be propagated to __aexit__
else:
assert 0, "Should have context cancelled?"
# channel should still be up
assert portal.channel.connected()
# ctx is closed here
await portal.run(assert_state, value=False)
else:
try:
with trio.fail_after(0.2):
await ctx.result()
assert 0, "Callee should have blocked!?"
except trio.TooSlowError:
await ctx.cancel()
try:
async with ctx.open_stream() as stream:
async for msg in stream:
pass
except tractor.ContextCancelled:
pass
else:
assert 0, "Should have received closed resource error?"
# ctx is closed here
await portal.run(assert_state, value=False)
# channel should not have been destroyed yet, only the
# inter-actor-task context
assert portal.channel.connected()
# teardown the actor
await portal.cancel_actor()
@tractor_test
async def test_multitask_caller_cancels_from_nonroot_task():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'ctx_cancelled',
enable_modules=[__name__],
)
async with portal.open_context(
expect_cancelled,
) as (ctx, sent):
await portal.run(assert_state, value=True)
assert sent is None
async with ctx.open_stream() as stream:
async def send_msg_then_cancel():
await stream.send('yo')
await portal.run(assert_state, value=True)
await ctx.cancel()
await portal.run(assert_state, value=False)
async with trio.open_nursery() as n:
n.start_soon(send_msg_then_cancel)
try:
async for msg in stream:
assert msg == 'yo'
except tractor.ContextCancelled:
raise # XXX: must be propagated to __aexit__
# channel should still be up
assert portal.channel.connected()
# ctx is closed here
await portal.run(assert_state, value=False)
# channel should not have been destroyed yet, only the
# inter-actor-task context
assert portal.channel.connected()
# teardown the actor
await portal.cancel_actor()
@tractor.context
async def cancel_self(
ctx: tractor.Context,
) -> None:
global _state
_state = True
await ctx.cancel()
try:
with trio.fail_after(0.1):
await trio.sleep_forever()
except trio.Cancelled:
raise
except trio.TooSlowError:
# should never get here
assert 0
@tractor_test
async def test_callee_cancels_before_started():
'''callee calls `Context.cancel()` while streaming and caller
sees stream terminated in `ContextCancelled`.
'''
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'cancels_self',
enable_modules=[__name__],
)
try:
async with portal.open_context(
cancel_self,
) as (ctx, sent):
async with ctx.open_stream():
await trio.sleep_forever()
# raises a special cancel signal
except tractor.ContextCancelled as ce:
ce.type == trio.Cancelled
# teardown the actor
await portal.cancel_actor()
@tractor.context
async def simple_rpc(
@ -14,10 +420,9 @@ async def simple_rpc(
data: int,
) -> None:
'''
Test a small ping-pong server.
"""Test a small ping-pong server.
'''
"""
# signal to parent that we're up
await ctx.started(data + 1)
@ -75,10 +480,9 @@ async def simple_rpc_with_forloop(
[simple_rpc, simple_rpc_with_forloop],
)
def test_simple_rpc(server_func, use_async_for):
'''
The simplest request response pattern.
"""The simplest request response pattern.
'''
"""
async def main():
async with tractor.open_nursery() as n:

View File

@ -1,193 +0,0 @@
'''
Sketchy network blackoutz, ugly byzantine gens, puedes eschuchar la
cancelacion?..
'''
from functools import partial
import pytest
from _pytest.pathlib import import_path
import trio
import tractor
from conftest import (
examples_dir,
)
@pytest.mark.parametrize(
'debug_mode',
[False, True],
ids=['no_debug_mode', 'debug_mode'],
)
@pytest.mark.parametrize(
'ipc_break',
[
# no breaks
{
'break_parent_ipc_after': False,
'break_child_ipc_after': False,
},
# only parent breaks
{
'break_parent_ipc_after': 500,
'break_child_ipc_after': False,
},
# only child breaks
{
'break_parent_ipc_after': False,
'break_child_ipc_after': 500,
},
# both: break parent first
{
'break_parent_ipc_after': 500,
'break_child_ipc_after': 800,
},
# both: break child first
{
'break_parent_ipc_after': 800,
'break_child_ipc_after': 500,
},
],
ids=[
'no_break',
'break_parent',
'break_child',
'break_both_parent_first',
'break_both_child_first',
],
)
def test_ipc_channel_break_during_stream(
debug_mode: bool,
spawn_backend: str,
ipc_break: dict | None,
):
'''
Ensure we can have an IPC channel break its connection during
streaming and it's still possible for the (simulated) user to kill
the actor tree using SIGINT.
We also verify the type of connection error expected in the parent
depending on which side if the IPC breaks first.
'''
if spawn_backend != 'trio':
if debug_mode:
pytest.skip('`debug_mode` only supported on `trio` spawner')
# non-`trio` spawners should never hit the hang condition that
# requires the user to do ctl-c to cancel the actor tree.
expect_final_exc = trio.ClosedResourceError
mod = import_path(
examples_dir() / 'advanced_faults' / 'ipc_failure_during_stream.py',
root=examples_dir(),
)
expect_final_exc = KeyboardInterrupt
# when ONLY the child breaks we expect the parent to get a closed
# resource error on the next `MsgStream.receive()` and then fail out
# and cancel the child from there.
if (
# only child breaks
(
ipc_break['break_child_ipc_after']
and ipc_break['break_parent_ipc_after'] is False
)
# both break but, parent breaks first
or (
ipc_break['break_child_ipc_after'] is not False
and (
ipc_break['break_parent_ipc_after']
> ipc_break['break_child_ipc_after']
)
)
):
expect_final_exc = trio.ClosedResourceError
# when the parent IPC side dies (even if the child's does as well
# but the child fails BEFORE the parent) we expect the channel to be
# sent a stop msg from the child at some point which will signal the
# parent that the stream has been terminated.
# NOTE: when the parent breaks "after" the child you get this same
# case as well, the child breaks the IPC channel with a stop msg
# before any closure takes place.
elif (
# only parent breaks
(
ipc_break['break_parent_ipc_after']
and ipc_break['break_child_ipc_after'] is False
)
# both break but, child breaks first
or (
ipc_break['break_parent_ipc_after'] is not False
and (
ipc_break['break_child_ipc_after']
> ipc_break['break_parent_ipc_after']
)
)
):
expect_final_exc = trio.EndOfChannel
with pytest.raises(expect_final_exc):
trio.run(
partial(
mod.main,
debug_mode=debug_mode,
start_method=spawn_backend,
**ipc_break,
)
)
@tractor.context
async def break_ipc_after_started(
ctx: tractor.Context,
) -> None:
await ctx.started()
async with ctx.open_stream() as stream:
await stream.aclose()
await trio.sleep(0.2)
await ctx.chan.send(None)
print('child broke IPC and terminating')
def test_stream_closed_right_after_ipc_break_and_zombie_lord_engages():
'''
Verify that is a subactor's IPC goes down just after bringing up a stream
the parent can trigger a SIGINT and the child will be reaped out-of-IPC by
the localhost process supervision machinery: aka "zombie lord".
'''
async def main():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'ipc_breaker',
enable_modules=[__name__],
)
with trio.move_on_after(1):
async with (
portal.open_context(
break_ipc_after_started
) as (ctx, sent),
):
async with ctx.open_stream():
await trio.sleep(0.5)
print('parent waiting on context')
print('parent exited context')
raise KeyboardInterrupt
with pytest.raises(KeyboardInterrupt):
trio.run(main)

View File

@ -1,20 +1,15 @@
'''
"""
Advanced streaming patterns using bidirectional streams and contexts.
'''
from collections import Counter
"""
import itertools
import platform
from typing import Set, Dict, List
import trio
import tractor
def is_win():
return platform.system() == 'Windows'
_registry: dict[str, set[tractor.MsgStream]] = {
_registry: Dict[str, Set[tractor.ReceiveMsgStream]] = {
'even': set(),
'odd': set(),
}
@ -76,7 +71,7 @@ async def subscribe(
async def consumer(
subs: list[str],
subs: List[str],
) -> None:
@ -177,22 +172,14 @@ async def one_task_streams_and_one_handles_reqresp(
def test_reqresp_ontopof_streaming():
'''
Test a subactor that both streams with one task and
'''Test a subactor that both streams with one task and
spawns another which handles a small requests-response
dialogue over the same bidir-stream.
'''
async def main():
# flat to make sure we get at least one pong
got_pong: bool = False
timeout: int = 2
if is_win(): # smh
timeout = 4
with trio.move_on_after(timeout):
with trio.move_on_after(2):
async with tractor.open_nursery() as n:
# name of this actor will be same as target func
@ -201,6 +188,9 @@ def test_reqresp_ontopof_streaming():
enable_modules=[__name__]
)
# flat to make sure we get at least one pong
got_pong: bool = False
async with portal.open_context(
one_task_streams_and_one_handles_reqresp,
@ -252,12 +242,8 @@ def test_sigint_both_stream_types():
side-by-side will cancel correctly from SIGINT.
'''
timeout: float = 2
if is_win(): # smh
timeout += 1
async def main():
with trio.fail_after(timeout):
with trio.fail_after(2):
async with tractor.open_nursery() as n:
# name of this actor will be same as target func
portal = await n.start_actor(
@ -283,98 +269,3 @@ def test_sigint_both_stream_types():
assert 0, "Didn't receive KBI!?"
except KeyboardInterrupt:
pass
@tractor.context
async def inf_streamer(
ctx: tractor.Context,
) -> None:
'''
Stream increasing ints until terminated with a 'done' msg.
'''
await ctx.started()
async with (
ctx.open_stream() as stream,
trio.open_nursery() as n,
):
async def bail_on_sentinel():
async for msg in stream:
if msg == 'done':
await stream.aclose()
else:
print(f'streamer received {msg}')
# start termination detector
n.start_soon(bail_on_sentinel)
for val in itertools.count():
try:
await stream.send(val)
except trio.ClosedResourceError:
# close out the stream gracefully
break
print('terminating streamer')
def test_local_task_fanout_from_stream():
'''
Single stream with multiple local consumer tasks using the
``MsgStream.subscribe()` api.
Ensure all tasks receive all values after stream completes sending.
'''
consumers = 22
async def main():
counts = Counter()
async with tractor.open_nursery() as tn:
p = await tn.start_actor(
'inf_streamer',
enable_modules=[__name__],
)
async with (
p.open_context(inf_streamer) as (ctx, _),
ctx.open_stream() as stream,
):
async def pull_and_count(name: str):
# name = trio.lowlevel.current_task().name
async with stream.subscribe() as recver:
assert isinstance(
recver,
tractor.trionics.BroadcastReceiver
)
async for val in recver:
# print(f'{name}: {val}')
counts[name] += 1
print(f'{name} bcaster ended')
print(f'{name} completed')
with trio.fail_after(3):
async with trio.open_nursery() as nurse:
for i in range(consumers):
nurse.start_soon(pull_and_count, i)
await trio.sleep(0.5)
print('\nterminating')
await stream.send('done')
print('closed stream connection')
assert len(counts) == consumers
mx = max(counts.values())
# make sure each task received all stream values
assert all(val == mx for val in counts.values())
await p.cancel_actor()
trio.run(main)

View File

@ -1,6 +1,5 @@
"""
Cancellation and error propagation
"""
import os
import signal
@ -8,10 +7,6 @@ import platform
import time
from itertools import repeat
from exceptiongroup import (
BaseExceptionGroup,
ExceptionGroup,
)
import pytest
import trio
import tractor
@ -19,10 +14,6 @@ import tractor
from conftest import tractor_test, no_windows
def is_win():
return platform.system() == 'Windows'
async def assert_err(delay=0):
await trio.sleep(delay)
assert 0
@ -32,9 +23,9 @@ async def sleep_forever():
await trio.sleep_forever()
async def do_nuthin():
async def do_nuthin(sleep=0):
# just nick the scheduler
await trio.sleep(0)
await trio.sleep(sleep)
@pytest.mark.parametrize(
@ -60,49 +51,29 @@ def test_remote_error(arb_addr, args_err):
arbiter_addr=arb_addr,
) as nursery:
# on a remote type error caused by bad input args
# this should raise directly which means we **don't** get
# an exception group outside the nursery since the error
# here and the far end task error are one in the same?
portal = await nursery.run_in_actor(
assert_err, name='errorer', **args
)
# get result(s) from main task
try:
# this means the root actor will also raise a local
# parent task error and thus an eg will propagate out
# of this actor nursery.
await portal.result()
except tractor.RemoteActorError as err:
assert err.type == errtype
print("Look Maa that actor failed hard, hehh")
raise
# ensure boxed errors
if args:
with pytest.raises(tractor.RemoteActorError) as excinfo:
trio.run(main)
# ensure boxed error is correct
assert excinfo.value.type == errtype
else:
# the root task will also error on the `.result()` call
# so we expect an error from there AND the child.
with pytest.raises(BaseExceptionGroup) as excinfo:
trio.run(main)
# ensure boxed errors
for exc in excinfo.value.exceptions:
assert exc.type == errtype
def test_multierror(arb_addr):
'''
Verify we raise a ``BaseExceptionGroup`` out of a nursery where
"""Verify we raise a ``trio.MultiError`` out of a nursery where
more then one actor errors.
'''
"""
async def main():
async with tractor.open_nursery(
arbiter_addr=arb_addr,
@ -119,19 +90,20 @@ def test_multierror(arb_addr):
print("Look Maa that first actor failed hard, hehh")
raise
# here we should get a ``BaseExceptionGroup`` containing exceptions
# here we should get a `trio.MultiError` containing exceptions
# from both subactors
with pytest.raises(BaseExceptionGroup):
with pytest.raises(trio.MultiError):
trio.run(main)
@pytest.mark.parametrize('delay', (0, 0.5))
@pytest.mark.parametrize(
'num_subactors', range(25, 26),
# 'num_subactors', range(2, 3),
)
def test_multierror_fast_nursery(arb_addr, start_method, num_subactors, delay):
"""Verify we raise a ``BaseExceptionGroup`` out of a nursery where
"""Verify we raise a ``trio.MultiError`` out of a nursery where
more then one actor errors and also with a delay before failure
to test failure during an ongoing spawning.
"""
@ -147,25 +119,24 @@ def test_multierror_fast_nursery(arb_addr, start_method, num_subactors, delay):
delay=delay
)
# with pytest.raises(trio.MultiError) as exc_info:
with pytest.raises(BaseExceptionGroup) as exc_info:
with pytest.raises(trio.MultiError) as exc_info:
trio.run(main)
assert exc_info.type == ExceptionGroup
err = exc_info.value
exceptions = err.exceptions
assert exc_info.type == tractor.MultiError
multi = exc_info.value
exceptions = multi.exceptions
if len(exceptions) == 2:
# sometimes oddly now there's an embedded BrokenResourceError ?
# sometimes there's an embedded BrokenResourceError
# next to the main multierror?
for exc in exceptions:
excs = getattr(exc, 'exceptions', None)
if excs:
exceptions = excs
if hasattr(exc, 'exceptions'):
multi = exc
break
assert len(exceptions) == num_subactors
assert len(multi.exceptions) == num_subactors
for exc in exceptions:
for exc in multi.exceptions:
assert isinstance(exc, tractor.RemoteActorError)
assert exc.type == AssertionError
@ -239,8 +210,8 @@ async def test_cancel_infinite_streamer(start_method):
[
# daemon actors sit idle while single task actors error out
(1, tractor.RemoteActorError, AssertionError, (assert_err, {}), None),
(2, BaseExceptionGroup, AssertionError, (assert_err, {}), None),
(3, BaseExceptionGroup, AssertionError, (assert_err, {}), None),
(2, tractor.MultiError, AssertionError, (assert_err, {}), None),
(3, tractor.MultiError, AssertionError, (assert_err, {}), None),
# 1 daemon actor errors out while single task actors sleep forever
(3, tractor.RemoteActorError, AssertionError, (sleep_forever, {}),
@ -251,8 +222,8 @@ async def test_cancel_infinite_streamer(start_method):
(do_nuthin, {}), (assert_err, {'delay': 1}, True)),
# daemon complete quickly delay while single task
# actors error after brief delay
(3, BaseExceptionGroup, AssertionError,
(assert_err, {'delay': 1}), (do_nuthin, {}, False)),
(3, tractor.MultiError, AssertionError,
(assert_err, {'delay': 1}), (do_nuthin, {'sleep': 0}, False)),
],
ids=[
'1_run_in_actor_fails',
@ -318,7 +289,7 @@ async def test_some_cancels_all(num_actors_and_errs, start_method, loglevel):
# should error here with a ``RemoteActorError`` or ``MultiError``
except first_err as err:
if isinstance(err, BaseExceptionGroup):
if isinstance(err, tractor.MultiError):
assert len(err.exceptions) == num_actors
for exc in err.exceptions:
if isinstance(exc, tractor.RemoteActorError):
@ -355,18 +326,17 @@ async def spawn_and_error(breadth, depth) -> None:
)
kwargs = {
'name': f'{name}_errorer_{i}',
# 'delay': 0.01,
}
await nursery.run_in_actor(*args, **kwargs)
@tractor_test
async def test_nested_multierrors(loglevel, start_method):
'''
Test that failed actor sets are wrapped in `BaseExceptionGroup`s. This
test goes only 2 nurseries deep but we should eventually have tests
"""Test that failed actor sets are wrapped in `trio.MultiError`s.
This test goes only 2 nurseries deep but we should eventually have tests
for arbitrary n-depth actor trees.
'''
"""
if start_method == 'trio':
depth = 3
subactor_breadth = 2
@ -390,36 +360,28 @@ async def test_nested_multierrors(loglevel, start_method):
breadth=subactor_breadth,
depth=depth,
)
except BaseExceptionGroup as err:
except trio.MultiError as err:
_err = err
assert len(err.exceptions) == subactor_breadth
for subexc in err.exceptions:
# NOTE: use [print(f'err: {err}') for err in _err.exceptions]
# to inspect errors from console on failure
# verify first level actor errors are wrapped as remote
if is_win():
if platform.system() == 'Windows':
# windows is often too slow and cancellation seems
# to happen before an actor is spawned
if isinstance(subexc, trio.Cancelled):
continue
elif isinstance(subexc, tractor.RemoteActorError):
else:
# on windows it seems we can't exactly be sure wtf
# will happen..
assert subexc.type in (
tractor.RemoteActorError,
trio.Cancelled,
BaseExceptionGroup,
)
elif isinstance(subexc, BaseExceptionGroup):
for subsub in subexc.exceptions:
if subsub in (tractor.RemoteActorError,):
subsub = subsub.type
assert type(subsub) in (
trio.Cancelled,
BaseExceptionGroup,
trio.MultiError
)
else:
assert isinstance(subexc, tractor.RemoteActorError)
@ -428,22 +390,27 @@ async def test_nested_multierrors(loglevel, start_method):
# XXX not sure what's up with this..
# on windows sometimes spawning is just too slow and
# we get back the (sent) cancel signal instead
if is_win():
if isinstance(subexc, tractor.RemoteActorError):
if platform.system() == 'Windows':
assert subexc.type in (
BaseExceptionGroup,
tractor.RemoteActorError
trio.MultiError,
tractor.RemoteActorError,
)
else:
assert isinstance(subexc, BaseExceptionGroup)
else:
assert subexc.type is ExceptionGroup
assert subexc.type in (
trio.MultiError,
trio.Cancelled,
# tractor.RemoteActorError,
)
else:
assert subexc.type in (
tractor.RemoteActorError,
trio.Cancelled
trio.Cancelled,
)
else:
pytest.fail(f'Got no error from nursery?')
@no_windows
def test_cancel_via_SIGINT(
@ -460,7 +427,7 @@ def test_cancel_via_SIGINT(
with trio.fail_after(2):
async with tractor.open_nursery() as tn:
await tn.start_actor('sucka')
if 'mp' in spawn_backend:
if spawn_backend == 'mp':
time.sleep(0.1)
os.kill(pid, signal.SIGINT)
await trio.sleep_forever()
@ -480,9 +447,6 @@ def test_cancel_via_SIGINT_other_task(
from a seperate ``trio`` child task.
"""
pid = os.getpid()
timeout: float = 2
if is_win(): # smh
timeout += 1
async def spawn_and_sleep_forever(task_status=trio.TASK_STATUS_IGNORED):
async with tractor.open_nursery() as tn:
@ -496,17 +460,16 @@ def test_cancel_via_SIGINT_other_task(
async def main():
# should never timeout since SIGINT should cancel the current program
with trio.fail_after(timeout):
with trio.fail_after(2):
async with trio.open_nursery() as n:
await n.start(spawn_and_sleep_forever)
if 'mp' in spawn_backend:
if spawn_backend == 'mp':
time.sleep(0.1)
os.kill(pid, signal.SIGINT)
with pytest.raises(KeyboardInterrupt):
trio.run(main)
async def spin_for(period=3):
"Sync sleep."
time.sleep(period)
@ -545,57 +508,3 @@ def test_cancel_while_childs_child_in_sync_sleep(
with pytest.raises(AssertionError):
trio.run(main)
def test_fast_graceful_cancel_when_spawn_task_in_soft_proc_wait_for_daemon(
start_method,
):
'''
This is a very subtle test which demonstrates how cancellation
during process collection can result in non-optimal teardown
performance on daemon actors. The fix for this test was to handle
``trio.Cancelled`` specially in the spawn task waiting in
`proc.wait()` such that ``Portal.cancel_actor()`` is called before
executing the "hard reap" sequence (which has an up to 3 second
delay currently).
In other words, if we can cancel the actor using a graceful remote
cancellation, and it's faster, we might as well do it.
'''
kbi_delay = 0.5
timeout: float = 2.9
if is_win(): # smh
timeout += 1
async def main():
start = time.time()
try:
async with trio.open_nursery() as nurse:
async with tractor.open_nursery() as tn:
p = await tn.start_actor(
'fast_boi',
enable_modules=[__name__],
)
async def delayed_kbi():
await trio.sleep(kbi_delay)
print(f'RAISING KBI after {kbi_delay} s')
raise KeyboardInterrupt
# start task which raises a kbi **after**
# the actor nursery ``__aexit__()`` has
# been run.
nurse.start_soon(delayed_kbi)
await p.run(do_nuthin)
finally:
duration = time.time() - start
if duration > timeout:
raise trio.TooSlowError(
'daemon cancel was slower then necessary..'
)
with pytest.raises(KeyboardInterrupt):
trio.run(main)

View File

@ -1,173 +0,0 @@
'''
Test a service style daemon that maintains a nursery for spawning
"remote async tasks" including both spawning other long living
sub-sub-actor daemons.
'''
from typing import Optional
import asyncio
from contextlib import asynccontextmanager as acm
import pytest
import trio
from trio_typing import TaskStatus
import tractor
from tractor import RemoteActorError
from async_generator import aclosing
async def aio_streamer(
from_trio: asyncio.Queue,
to_trio: trio.abc.SendChannel,
) -> trio.abc.ReceiveChannel:
# required first msg to sync caller
to_trio.send_nowait(None)
from itertools import cycle
for i in cycle(range(10)):
to_trio.send_nowait(i)
await asyncio.sleep(0.01)
async def trio_streamer():
from itertools import cycle
for i in cycle(range(10)):
yield i
await trio.sleep(0.01)
async def trio_sleep_and_err(delay: float = 0.5):
await trio.sleep(delay)
# name error
doggy() # noqa
_cached_stream: Optional[
trio.abc.ReceiveChannel
] = None
@acm
async def wrapper_mngr(
):
from tractor.trionics import broadcast_receiver
global _cached_stream
in_aio = tractor.current_actor().is_infected_aio()
if in_aio:
if _cached_stream:
from_aio = _cached_stream
# if we already have a cached feed deliver a rx side clone
# to consumer
async with broadcast_receiver(from_aio, 6) as from_aio:
yield from_aio
return
else:
async with tractor.to_asyncio.open_channel_from(
aio_streamer,
) as (first, from_aio):
assert not first
# cache it so next task uses broadcast receiver
_cached_stream = from_aio
yield from_aio
else:
async with aclosing(trio_streamer()) as stream:
# cache it so next task uses broadcast receiver
_cached_stream = stream
yield stream
_nursery: trio.Nursery = None
@tractor.context
async def trio_main(
ctx: tractor.Context,
):
# sync
await ctx.started()
# stash a "service nursery" as "actor local" (aka a Python global)
global _nursery
n = _nursery
assert n
async def consume_stream():
async with wrapper_mngr() as stream:
async for msg in stream:
print(msg)
# run 2 tasks to ensure broadcaster chan use
n.start_soon(consume_stream)
n.start_soon(consume_stream)
n.start_soon(trio_sleep_and_err)
await trio.sleep_forever()
@tractor.context
async def open_actor_local_nursery(
ctx: tractor.Context,
):
global _nursery
async with trio.open_nursery() as n:
_nursery = n
await ctx.started()
await trio.sleep(10)
# await trio.sleep(1)
# XXX: this causes the hang since
# the caller does not unblock from its own
# ``trio.sleep_forever()``.
# TODO: we need to test a simple ctx task starting remote tasks
# that error and then blocking on a ``Nursery.start()`` which
# never yields back.. aka a scenario where the
# ``tractor.context`` task IS NOT in the service n's cancel
# scope.
n.cancel_scope.cancel()
@pytest.mark.parametrize(
'asyncio_mode',
[True, False],
ids='asyncio_mode={}'.format,
)
def test_actor_managed_trio_nursery_task_error_cancels_aio(
asyncio_mode: bool,
arb_addr
):
'''
Verify that a ``trio`` nursery created managed in a child actor
correctly relays errors to the parent actor when one of its spawned
tasks errors even when running in infected asyncio mode and using
broadcast receivers for multi-task-per-actor subscription.
'''
async def main():
# cancel the nursery shortly after boot
async with tractor.open_nursery() as n:
p = await n.start_actor(
'nursery_mngr',
infect_asyncio=asyncio_mode,
enable_modules=[__name__],
)
async with (
p.open_context(open_actor_local_nursery) as (ctx, first),
p.open_context(trio_main) as (ctx, first),
):
await trio.sleep_forever()
with pytest.raises(RemoteActorError) as excinfo:
trio.run(main)
# verify boxed error
err = excinfo.value
assert isinstance(err.type(), NameError)

View File

@ -1,84 +0,0 @@
import itertools
import pytest
import trio
import tractor
from tractor import open_actor_cluster
from tractor.trionics import gather_contexts
from conftest import tractor_test
MESSAGE = 'tractoring at full speed'
def test_empty_mngrs_input_raises() -> None:
async def main():
with trio.fail_after(1):
async with (
open_actor_cluster(
modules=[__name__],
# NOTE: ensure we can passthrough runtime opts
loglevel='info',
# debug_mode=True,
) as portals,
gather_contexts(
# NOTE: it's the use of inline-generator syntax
# here that causes the empty input.
mngrs=(
p.open_context(worker) for p in portals.values()
),
),
):
assert 0
with pytest.raises(ValueError):
trio.run(main)
@tractor.context
async def worker(
ctx: tractor.Context,
) -> None:
await ctx.started()
async with ctx.open_stream(
backpressure=True,
) as stream:
# TODO: this with the below assert causes a hang bug?
# with trio.move_on_after(1):
async for msg in stream:
# do something with msg
print(msg)
assert msg == MESSAGE
# TODO: does this ever cause a hang
# assert 0
@tractor_test
async def test_streaming_to_actor_cluster() -> None:
async with (
open_actor_cluster(modules=[__name__]) as portals,
gather_contexts(
mngrs=[p.open_context(worker) for p in portals.values()],
) as contexts,
gather_contexts(
mngrs=[ctx[0].open_stream() for ctx in contexts],
) as streams,
):
with trio.move_on_after(1):
for stream in itertools.cycle(streams):
await stream.send(MESSAGE)

View File

@ -1,798 +0,0 @@
'''
``async with ():`` inlined context-stream cancellation testing.
Verify the we raise errors when streams are opened prior to sync-opening
a ``tractor.Context`` beforehand.
'''
from contextlib import asynccontextmanager as acm
from itertools import count
import platform
from typing import Optional
import pytest
import trio
import tractor
from tractor._exceptions import StreamOverrun
from conftest import tractor_test
# ``Context`` semantics are as follows,
# ------------------------------------
# - standard setup/teardown:
# ``Portal.open_context()`` starts a new
# remote task context in another actor. The target actor's task must
# call ``Context.started()`` to unblock this entry on the caller side.
# the callee task executes until complete and returns a final value
# which is delivered to the caller side and retreived via
# ``Context.result()``.
# - cancel termination:
# context can be cancelled on either side where either end's task can
# call ``Context.cancel()`` which raises a local ``trio.Cancelled``
# and sends a task cancel request to the remote task which in turn
# raises a ``trio.Cancelled`` in that scope, catches it, and re-raises
# as ``ContextCancelled``. This is then caught by
# ``Portal.open_context()``'s exit and we get a graceful termination
# of the linked tasks.
# - error termination:
# error is caught after all context-cancel-scope tasks are cancelled
# via regular ``trio`` cancel scope semantics, error is sent to other
# side and unpacked as a `RemoteActorError`.
# ``Context.open_stream() as stream: MsgStream:`` msg semantics are:
# -----------------------------------------------------------------
# - either side can ``.send()`` which emits a 'yield' msgs and delivers
# a value to the a ``MsgStream.receive()`` call.
# - stream closure: one end relays a 'stop' message which terminates an
# ongoing ``MsgStream`` iteration.
# - cancel/error termination: as per the context semantics above but
# with implicit stream closure on the cancelling end.
_state: bool = False
@tractor.context
async def too_many_starteds(
ctx: tractor.Context,
) -> None:
'''
Call ``Context.started()`` more then once (an error).
'''
await ctx.started()
try:
await ctx.started()
except RuntimeError:
raise
@tractor.context
async def not_started_but_stream_opened(
ctx: tractor.Context,
) -> None:
'''
Enter ``Context.open_stream()`` without calling ``.started()``.
'''
try:
async with ctx.open_stream():
assert 0
except RuntimeError:
raise
@pytest.mark.parametrize(
'target',
[too_many_starteds, not_started_but_stream_opened],
ids='misuse_type={}'.format,
)
def test_started_misuse(target):
async def main():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
target.__name__,
enable_modules=[__name__],
)
async with portal.open_context(target) as (ctx, sent):
await trio.sleep(1)
with pytest.raises(tractor.RemoteActorError):
trio.run(main)
@tractor.context
async def simple_setup_teardown(
ctx: tractor.Context,
data: int,
block_forever: bool = False,
) -> None:
# startup phase
global _state
_state = True
# signal to parent that we're up
await ctx.started(data + 1)
try:
if block_forever:
# block until cancelled
await trio.sleep_forever()
else:
return 'yo'
finally:
_state = False
async def assert_state(value: bool):
global _state
assert _state == value
@pytest.mark.parametrize(
'error_parent',
[False, ValueError, KeyboardInterrupt],
)
@pytest.mark.parametrize(
'callee_blocks_forever',
[False, True],
ids=lambda item: f'callee_blocks_forever={item}'
)
@pytest.mark.parametrize(
'pointlessly_open_stream',
[False, True],
ids=lambda item: f'open_stream={item}'
)
def test_simple_context(
error_parent,
callee_blocks_forever,
pointlessly_open_stream,
):
timeout = 1.5 if not platform.system() == 'Windows' else 4
async def main():
with trio.fail_after(timeout):
async with tractor.open_nursery() as nursery:
portal = await nursery.start_actor(
'simple_context',
enable_modules=[__name__],
)
try:
async with portal.open_context(
simple_setup_teardown,
data=10,
block_forever=callee_blocks_forever,
) as (ctx, sent):
assert sent == 11
if callee_blocks_forever:
await portal.run(assert_state, value=True)
else:
assert await ctx.result() == 'yo'
if not error_parent:
await ctx.cancel()
if pointlessly_open_stream:
async with ctx.open_stream():
if error_parent:
raise error_parent
if callee_blocks_forever:
await ctx.cancel()
else:
# in this case the stream will send a
# 'stop' msg to the far end which needs
# to be ignored
pass
else:
if error_parent:
raise error_parent
finally:
# after cancellation
if not error_parent:
await portal.run(assert_state, value=False)
# shut down daemon
await portal.cancel_actor()
if error_parent:
try:
trio.run(main)
except error_parent:
pass
except trio.MultiError as me:
# XXX: on windows it seems we may have to expect the group error
from tractor._exceptions import is_multi_cancelled
assert is_multi_cancelled(me)
else:
trio.run(main)
# basic stream terminations:
# - callee context closes without using stream
# - caller context closes without using stream
# - caller context calls `Context.cancel()` while streaming
# is ongoing resulting in callee being cancelled
# - callee calls `Context.cancel()` while streaming and caller
# sees stream terminated in `RemoteActorError`
# TODO: future possible features
# - restart request: far end raises `ContextRestart`
@tractor.context
async def close_ctx_immediately(
ctx: tractor.Context,
) -> None:
await ctx.started()
global _state
async with ctx.open_stream():
pass
@tractor_test
async def test_callee_closes_ctx_after_stream_open():
'callee context closes without using stream'
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'fast_stream_closer',
enable_modules=[__name__],
)
with trio.fail_after(2):
async with portal.open_context(
close_ctx_immediately,
# flag to avoid waiting the final result
# cancel_on_exit=True,
) as (ctx, sent):
assert sent is None
with trio.fail_after(0.5):
async with ctx.open_stream() as stream:
# should fall through since ``StopAsyncIteration``
# should be raised through translation of
# a ``trio.EndOfChannel`` by
# ``trio.abc.ReceiveChannel.__anext__()``
async for _ in stream:
assert 0
else:
# verify stream is now closed
try:
await stream.receive()
except trio.EndOfChannel:
pass
# TODO: should be just raise the closed resource err
# directly here to enforce not allowing a re-open
# of a stream to the context (at least until a time of
# if/when we decide that's a good idea?)
try:
with trio.fail_after(0.5):
async with ctx.open_stream() as stream:
pass
except trio.ClosedResourceError:
pass
await portal.cancel_actor()
@tractor.context
async def expect_cancelled(
ctx: tractor.Context,
) -> None:
global _state
_state = True
await ctx.started()
try:
async with ctx.open_stream() as stream:
async for msg in stream:
await stream.send(msg) # echo server
except trio.Cancelled:
# expected case
_state = False
raise
else:
assert 0, "Wasn't cancelled!?"
@pytest.mark.parametrize(
'use_ctx_cancel_method',
[False, True],
)
@tractor_test
async def test_caller_closes_ctx_after_callee_opens_stream(
use_ctx_cancel_method: bool,
):
'caller context closes without using stream'
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'ctx_cancelled',
enable_modules=[__name__],
)
async with portal.open_context(
expect_cancelled,
) as (ctx, sent):
await portal.run(assert_state, value=True)
assert sent is None
# call cancel explicitly
if use_ctx_cancel_method:
await ctx.cancel()
try:
async with ctx.open_stream() as stream:
async for msg in stream:
pass
except tractor.ContextCancelled:
raise # XXX: must be propagated to __aexit__
else:
assert 0, "Should have context cancelled?"
# channel should still be up
assert portal.channel.connected()
# ctx is closed here
await portal.run(assert_state, value=False)
else:
try:
with trio.fail_after(0.2):
await ctx.result()
assert 0, "Callee should have blocked!?"
except trio.TooSlowError:
await ctx.cancel()
try:
async with ctx.open_stream() as stream:
async for msg in stream:
pass
except tractor.ContextCancelled:
pass
else:
assert 0, "Should have received closed resource error?"
# ctx is closed here
await portal.run(assert_state, value=False)
# channel should not have been destroyed yet, only the
# inter-actor-task context
assert portal.channel.connected()
# teardown the actor
await portal.cancel_actor()
@tractor_test
async def test_multitask_caller_cancels_from_nonroot_task():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'ctx_cancelled',
enable_modules=[__name__],
)
async with portal.open_context(
expect_cancelled,
) as (ctx, sent):
await portal.run(assert_state, value=True)
assert sent is None
async with ctx.open_stream() as stream:
async def send_msg_then_cancel():
await stream.send('yo')
await portal.run(assert_state, value=True)
await ctx.cancel()
await portal.run(assert_state, value=False)
async with trio.open_nursery() as n:
n.start_soon(send_msg_then_cancel)
try:
async for msg in stream:
assert msg == 'yo'
except tractor.ContextCancelled:
raise # XXX: must be propagated to __aexit__
# channel should still be up
assert portal.channel.connected()
# ctx is closed here
await portal.run(assert_state, value=False)
# channel should not have been destroyed yet, only the
# inter-actor-task context
assert portal.channel.connected()
# teardown the actor
await portal.cancel_actor()
@tractor.context
async def cancel_self(
ctx: tractor.Context,
) -> None:
global _state
_state = True
await ctx.cancel()
# should inline raise immediately
try:
async with ctx.open_stream():
pass
except tractor.ContextCancelled:
# suppress for now so we can do checkpoint tests below
pass
else:
raise RuntimeError('Context didnt cancel itself?!')
# check a real ``trio.Cancelled`` is raised on a checkpoint
try:
with trio.fail_after(0.1):
await trio.sleep_forever()
except trio.Cancelled:
raise
except trio.TooSlowError:
# should never get here
assert 0
@tractor_test
async def test_callee_cancels_before_started():
'''
Callee calls `Context.cancel()` while streaming and caller
sees stream terminated in `ContextCancelled`.
'''
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'cancels_self',
enable_modules=[__name__],
)
try:
async with portal.open_context(
cancel_self,
) as (ctx, sent):
async with ctx.open_stream():
await trio.sleep_forever()
# raises a special cancel signal
except tractor.ContextCancelled as ce:
ce.type == trio.Cancelled
# the traceback should be informative
assert 'cancelled itself' in ce.msgdata['tb_str']
# teardown the actor
await portal.cancel_actor()
@tractor.context
async def never_open_stream(
ctx: tractor.Context,
) -> None:
'''
Context which never opens a stream and blocks.
'''
await ctx.started()
await trio.sleep_forever()
@tractor.context
async def keep_sending_from_callee(
ctx: tractor.Context,
msg_buffer_size: Optional[int] = None,
) -> None:
'''
Send endlessly on the calleee stream.
'''
await ctx.started()
async with ctx.open_stream(
msg_buffer_size=msg_buffer_size,
) as stream:
for msg in count():
print(f'callee sending {msg}')
await stream.send(msg)
await trio.sleep(0.01)
@pytest.mark.parametrize(
'overrun_by',
[
('caller', 1, never_open_stream),
('cancel_caller_during_overrun', 1, never_open_stream),
('callee', 0, keep_sending_from_callee),
],
ids='overrun_condition={}'.format,
)
def test_one_end_stream_not_opened(overrun_by):
'''
This should exemplify the bug from:
https://github.com/goodboy/tractor/issues/265
'''
overrunner, buf_size_increase, entrypoint = overrun_by
from tractor._runtime import Actor
buf_size = buf_size_increase + Actor.msg_buffer_size
async def main():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
entrypoint.__name__,
enable_modules=[__name__],
)
async with portal.open_context(
entrypoint,
) as (ctx, sent):
assert sent is None
if 'caller' in overrunner:
async with ctx.open_stream() as stream:
for i in range(buf_size):
print(f'sending {i}')
await stream.send(i)
if 'cancel' in overrunner:
# without this we block waiting on the child side
await ctx.cancel()
else:
# expect overrun error to be relayed back
# and this sleep interrupted
await trio.sleep_forever()
else:
# callee overruns caller case so we do nothing here
await trio.sleep_forever()
await portal.cancel_actor()
# 2 overrun cases and the no overrun case (which pushes right up to
# the msg limit)
if overrunner == 'caller' or 'cance' in overrunner:
with pytest.raises(tractor.RemoteActorError) as excinfo:
trio.run(main)
assert excinfo.value.type == StreamOverrun
elif overrunner == 'callee':
with pytest.raises(tractor.RemoteActorError) as excinfo:
trio.run(main)
# TODO: embedded remote errors so that we can verify the source
# error? the callee delivers an error which is an overrun
# wrapped in a remote actor error.
assert excinfo.value.type == tractor.RemoteActorError
else:
trio.run(main)
@tractor.context
async def echo_back_sequence(
ctx: tractor.Context,
seq: list[int],
msg_buffer_size: Optional[int] = None,
) -> None:
'''
Send endlessly on the calleee stream.
'''
await ctx.started()
async with ctx.open_stream(
msg_buffer_size=msg_buffer_size,
) as stream:
seq = list(seq) # bleh, `msgpack`...
count = 0
while count < 3:
batch = []
async for msg in stream:
batch.append(msg)
if batch == seq:
break
for msg in batch:
print(f'callee sending {msg}')
await stream.send(msg)
count += 1
return 'yo'
def test_stream_backpressure():
'''
Demonstrate small overruns of each task back and forth
on a stream not raising any errors by default.
'''
async def main():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'callee_sends_forever',
enable_modules=[__name__],
)
seq = list(range(3))
async with portal.open_context(
echo_back_sequence,
seq=seq,
msg_buffer_size=1,
) as (ctx, sent):
assert sent is None
async with ctx.open_stream(msg_buffer_size=1) as stream:
count = 0
while count < 3:
for msg in seq:
print(f'caller sending {msg}')
await stream.send(msg)
await trio.sleep(0.1)
batch = []
async for msg in stream:
batch.append(msg)
if batch == seq:
break
count += 1
# here the context should return
assert await ctx.result() == 'yo'
# cancel the daemon
await portal.cancel_actor()
trio.run(main)
@tractor.context
async def sleep_forever(
ctx: tractor.Context,
) -> None:
await ctx.started()
async with ctx.open_stream():
await trio.sleep_forever()
@acm
async def attach_to_sleep_forever():
'''
Cancel a context **before** any underlying error is raised in order
to trigger a local reception of a ``ContextCancelled`` which **should not**
be re-raised in the local surrounding ``Context`` *iff* the cancel was
requested by **this** side of the context.
'''
async with tractor.wait_for_actor('sleeper') as p2:
async with (
p2.open_context(sleep_forever) as (peer_ctx, first),
peer_ctx.open_stream(),
):
try:
yield
finally:
# XXX: previously this would trigger local
# ``ContextCancelled`` to be received and raised in the
# local context overriding any local error due to
# logic inside ``_invoke()`` which checked for
# an error set on ``Context._error`` and raised it in
# under a cancellation scenario.
# The problem is you can have a remote cancellation
# that is part of a local error and we shouldn't raise
# ``ContextCancelled`` **iff** we weren't the side of
# the context to initiate it, i.e.
# ``Context._cancel_called`` should **NOT** have been
# set. The special logic to handle this case is now
# inside ``Context._may_raise_from_remote_msg()`` XD
await peer_ctx.cancel()
@tractor.context
async def error_before_started(
ctx: tractor.Context,
) -> None:
'''
This simulates exactly an original bug discovered in:
https://github.com/pikers/piker/issues/244
'''
async with attach_to_sleep_forever():
# send an unserializable type which should raise a type error
# here and **NOT BE SWALLOWED** by the surrounding acm!!?!
await ctx.started(object())
def test_do_not_swallow_error_before_started_by_remote_contextcancelled():
'''
Verify that an error raised in a remote context which itself opens another
remote context, which it cancels, does not ovverride the original error that
caused the cancellation of the secondardy context.
'''
async def main():
async with tractor.open_nursery() as n:
portal = await n.start_actor(
'errorer',
enable_modules=[__name__],
)
await n.start_actor(
'sleeper',
enable_modules=[__name__],
)
async with (
portal.open_context(
error_before_started
) as (ctx, sent),
):
await trio.sleep_forever()
with pytest.raises(tractor.RemoteActorError) as excinfo:
trio.run(main)
assert excinfo.value.type == TypeError

View File

@ -1,34 +1,20 @@
"""
That "native" debug mode better work!
That native debug better work!
All these tests can be understood (somewhat) by running the equivalent
`examples/debugging/` scripts manually.
TODO:
- none of these tests have been run successfully on windows yet but
there's been manual testing that verified it works.
- wonder if any of it'll work on OS X?
TODO: None of these tests have been run successfully on windows yet.
"""
import itertools
from os import path
from typing import Optional
import platform
import pathlib
import sys
import time
from os import path
import platform
import pytest
import pexpect
from pexpect.exceptions import (
TIMEOUT,
EOF,
)
from conftest import (
examples_dir,
_ci_env,
)
from conftest import repodir
# TODO: The next great debugger audit could be done by you!
# - recurrent entry to breakpoint() from single actor *after* and an
@ -47,31 +33,19 @@ if platform.system() == 'Windows':
)
def examples_dir():
"""Return the abspath to the examples directory.
"""
return path.join(repodir(), 'examples', 'debugging/')
def mk_cmd(ex_name: str) -> str:
'''
Generate a command suitable to pass to ``pexpect.spawn()``.
'''
script_path: pathlib.Path = examples_dir() / 'debugging' / f'{ex_name}.py'
return ' '.join(['python', str(script_path)])
# TODO: was trying to this xfail style but some weird bug i see in CI
# that's happening at collect time.. pretty soon gonna dump actions i'm
# thinkin...
# in CI we skip tests which >= depth 1 actor trees due to there
# still being an oustanding issue with relaying the debug-mode-state
# through intermediary parents.
has_nested_actors = pytest.mark.has_nested_actors
# .xfail(
# os.environ.get('CI', False),
# reason=(
# 'This test uses nested actors and fails in CI\n'
# 'The test seems to run fine locally but until we solve the '
# 'following issue this CI test will be xfail:\n'
# 'https://github.com/goodboy/tractor/issues/320'
# )
# )
"""Generate a command suitable to pass to ``pexpect.spawn()``.
"""
return ' '.join(
['python',
path.join(examples_dir(), f'{ex_name}.py')]
)
@pytest.fixture
@ -95,83 +69,6 @@ def spawn(
return _spawn
PROMPT = r"\(Pdb\+\)"
def expect(
child,
# prompt by default
patt: str = PROMPT,
**kwargs,
) -> None:
'''
Expect wrapper that prints last seen console
data before failing.
'''
try:
child.expect(
patt,
**kwargs,
)
except TIMEOUT:
before = str(child.before.decode())
print(before)
raise
def assert_before(
child,
patts: list[str],
) -> None:
before = str(child.before.decode())
for patt in patts:
try:
assert patt in before
except AssertionError:
print(before)
raise
@pytest.fixture(
params=[False, True],
ids='ctl-c={}'.format,
)
def ctlc(
request,
ci_env: bool,
) -> bool:
use_ctlc = request.param
node = request.node
markers = node.own_markers
for mark in markers:
if mark.name == 'has_nested_actors':
pytest.skip(
f'Test {node} has nested actors and fails with Ctrl-C.\n'
f'The test can sometimes run fine locally but until'
' we solve' 'this issue this CI test will be xfail:\n'
'https://github.com/goodboy/tractor/issues/320'
)
if use_ctlc:
# XXX: disable pygments highlighting for auto-tests
# since some envs (like actions CI) will struggle
# the the added color-char encoding..
from tractor._debug import TractorConfig
TractorConfig.use_pygements = False
yield use_ctlc
@pytest.mark.parametrize(
'user_in_out',
[
@ -181,16 +78,14 @@ def ctlc(
ids=lambda item: f'{item[0]} -> {item[1]}',
)
def test_root_actor_error(spawn, user_in_out):
'''
Demonstrate crash handler entering pdb from basic error in root actor.
'''
"""Demonstrate crash handler entering pdbpp from basic error in root actor.
"""
user_input, expect_err_str = user_in_out
child = spawn('root_actor_error')
# scan for the prompt
expect(child, PROMPT)
# scan for the pdbpp prompt
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
@ -202,7 +97,7 @@ def test_root_actor_error(spawn, user_in_out):
child.sendline(user_input)
# process should exit
expect(child, EOF)
child.expect(pexpect.EOF)
assert expect_err_str in str(child.before)
@ -220,8 +115,8 @@ def test_root_actor_bp(spawn, user_in_out):
user_input, expect_err_str = user_in_out
child = spawn('root_actor_breakpoint')
# scan for the prompt
child.expect(PROMPT)
# scan for the pdbpp prompt
child.expect(r"\(Pdb\+\+\)")
assert 'Error' not in str(child.before)
@ -238,129 +133,56 @@ def test_root_actor_bp(spawn, user_in_out):
assert expect_err_str in str(child.before)
def do_ctlc(
child,
count: int = 3,
delay: float = 0.1,
patt: Optional[str] = None,
# expect repl UX to reprint the prompt after every
# ctrl-c send.
# XXX: no idea but, in CI this never seems to work even on 3.10 so
# needs some further investigation potentially...
expect_prompt: bool = not _ci_env,
) -> None:
# make sure ctl-c sends don't do anything but repeat output
for _ in range(count):
time.sleep(delay)
child.sendcontrol('c')
# TODO: figure out why this makes CI fail..
# if you run this test manually it works just fine..
if expect_prompt:
before = str(child.before.decode())
time.sleep(delay)
child.expect(PROMPT)
time.sleep(delay)
if patt:
# should see the last line on console
assert patt in before
def test_root_actor_bp_forever(
spawn,
ctlc: bool,
):
def test_root_actor_bp_forever(spawn):
"Re-enter a breakpoint from the root actor-task."
child = spawn('root_actor_breakpoint_forever')
# do some "next" commands to demonstrate recurrent breakpoint
# entries
for _ in range(10):
child.expect(PROMPT)
if ctlc:
do_ctlc(child)
child.sendline('next')
child.expect(r"\(Pdb\+\+\)")
# do one continue which should trigger a
# new task to lock the tty
# do one continue which should trigger a new task to lock the tty
child.sendline('continue')
child.expect(PROMPT)
# seems that if we hit ctrl-c too fast the
# sigint guard machinery might not kick in..
time.sleep(0.001)
if ctlc:
do_ctlc(child)
child.expect(r"\(Pdb\+\+\)")
# XXX: this previously caused a bug!
child.sendline('n')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
child.sendline('n')
child.expect(PROMPT)
# quit out of the loop
child.sendline('q')
child.expect(pexpect.EOF)
child.expect(r"\(Pdb\+\+\)")
@pytest.mark.parametrize(
'do_next',
(True, False),
ids='do_next={}'.format,
)
def test_subactor_error(
spawn,
ctlc: bool,
do_next: bool,
):
'''
Single subactor raising an error
def test_subactor_error(spawn):
"Single subactor raising an error"
'''
child = spawn('subactor_error')
# scan for the prompt
child.expect(PROMPT)
# scan for the pdbpp prompt
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "Attaching to pdb in crashed actor: ('name_error'" in before
if do_next:
child.sendline('n')
else:
# make sure ctl-c sends don't do anything but repeat output
if ctlc:
do_ctlc(
child,
)
# send user command and (in this case it's the same for 'continue'
# vs. 'quit') the debugger should enter a second time in the nursery
# creating actor
# send user command
# (in this case it's the same for 'continue' vs. 'quit')
child.sendline('continue')
child.expect(PROMPT)
# the debugger should enter a second time in the nursery
# creating actor
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
# root actor gets debugger engaged
assert "Attaching to pdb in crashed actor: ('root'" in before
# error is a remote error propagated from the subactor
assert "RemoteActorError: ('name_error'" in before
# another round
if ctlc:
do_ctlc(child)
child.sendline('c')
child.expect('\r\n')
@ -368,16 +190,13 @@ def test_subactor_error(
child.expect(pexpect.EOF)
def test_subactor_breakpoint(
spawn,
ctlc: bool,
):
def test_subactor_breakpoint(spawn):
"Single subactor with an infinite breakpoint loop"
child = spawn('subactor_breakpoint')
# scan for the prompt
child.expect(PROMPT)
# scan for the pdbpp prompt
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "Attaching pdb to actor: ('breakpoint_forever'" in before
@ -386,34 +205,25 @@ def test_subactor_breakpoint(
# entries
for _ in range(10):
child.sendline('next')
child.expect(PROMPT)
if ctlc:
do_ctlc(child)
child.expect(r"\(Pdb\+\+\)")
# now run some "continues" to show re-entries
for _ in range(5):
child.sendline('continue')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "Attaching pdb to actor: ('breakpoint_forever'" in before
if ctlc:
do_ctlc(child)
# finally quit the loop
child.sendline('q')
# child process should exit but parent will capture pdb.BdbQuit
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "RemoteActorError: ('breakpoint_forever'" in before
assert 'bdb.BdbQuit' in before
if ctlc:
do_ctlc(child)
# quit the parent
child.sendline('c')
@ -425,159 +235,84 @@ def test_subactor_breakpoint(
assert 'bdb.BdbQuit' in before
@has_nested_actors
def test_multi_subactors(
spawn,
ctlc: bool,
):
'''
Multiple subactors, both erroring and
breakpointing as well as a nested subactor erroring.
'''
def test_multi_subactors(spawn):
"""Multiple subactors, both erroring and breakpointing as well as
a nested subactor erroring.
"""
child = spawn(r'multi_subactors')
# scan for the prompt
child.expect(PROMPT)
# scan for the pdbpp prompt
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "Attaching pdb to actor: ('breakpoint_forever'" in before
if ctlc:
do_ctlc(child)
# do some "next" commands to demonstrate recurrent breakpoint
# entries
for _ in range(10):
child.sendline('next')
child.expect(PROMPT)
if ctlc:
do_ctlc(child)
child.expect(r"\(Pdb\+\+\)")
# continue to next error
child.sendline('c')
# first name_error failure
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "Attaching to pdb in crashed actor: ('name_error'" in before
assert "NameError" in before
if ctlc:
do_ctlc(child)
# continue again
child.sendline('c')
# 2nd name_error failure
child.expect(PROMPT)
# TODO: will we ever get the race where this crash will show up?
# blocklist strat now prevents this crash
# assert_before(child, [
# "Attaching to pdb in crashed actor: ('name_error_1'",
# "NameError",
# ])
if ctlc:
do_ctlc(child)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "NameError" in before
# breakpoint loop should re-engage
child.sendline('c')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "Attaching pdb to actor: ('breakpoint_forever'" in before
if ctlc:
do_ctlc(child)
# wait for spawn error to show up
spawn_err = "Attaching to pdb in crashed actor: ('spawn_error'"
start = time.time()
while (
spawn_err not in before
and (time.time() - start) < 3 # timeout eventually
):
child.sendline('c')
time.sleep(0.1)
child.expect(PROMPT)
before = str(child.before.decode())
if ctlc:
do_ctlc(child)
# 2nd depth nursery should trigger
# (XXX: this below if guard is technically a hack that makes the
# nested case seem to work locally on linux but ideally in the long
# run this can be dropped.)
if not ctlc:
assert_before(child, [
spawn_err,
"RemoteActorError: ('name_error_1'",
])
# now run some "continues" to show re-entries
for _ in range(5):
child.sendline('c')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
# quit the loop and expect parent to attach
child.sendline('q')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert_before(child, [
# debugger attaches to root
"Attaching to pdb in crashed actor: ('root'",
# expect a multierror with exceptions for each sub-actor
"RemoteActorError: ('breakpoint_forever'",
"RemoteActorError: ('name_error'",
"RemoteActorError: ('spawn_error'",
"RemoteActorError: ('name_error_1'",
'bdb.BdbQuit',
])
if ctlc:
do_ctlc(child)
assert "Attaching to pdb in crashed actor: ('root'" in before
assert "RemoteActorError: ('breakpoint_forever'" in before
assert 'bdb.BdbQuit' in before
# process should exit
child.sendline('c')
child.expect(pexpect.EOF)
# repeat of previous multierror for final output
assert_before(child, [
"RemoteActorError: ('breakpoint_forever'",
"RemoteActorError: ('name_error'",
"RemoteActorError: ('spawn_error'",
"RemoteActorError: ('name_error_1'",
'bdb.BdbQuit',
])
before = str(child.before.decode())
assert "RemoteActorError: ('breakpoint_forever'" in before
assert 'bdb.BdbQuit' in before
def test_multi_daemon_subactors(
spawn,
loglevel: str,
ctlc: bool
):
'''
Multiple daemon subactors, both erroring and breakpointing within a
def test_multi_daemon_subactors(spawn, loglevel):
"""Multiple daemon subactors, both erroring and breakpointing within a
stream.
'''
"""
child = spawn('multi_daemon_subactors')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
# there can be a race for which subactor will acquire
# the root's tty lock first so anticipate either crash
# message on the first entry.
bp_forever_msg = "Attaching pdb to actor: ('bp_forever'"
name_error_msg = "NameError: name 'doggypants' is not defined"
# there is a race for which subactor will acquire
# the root's tty lock first
before = str(child.before.decode())
bp_forever_msg = "Attaching pdb to actor: ('bp_forever'"
name_error_msg = "NameError"
if bp_forever_msg in before:
next_msg = name_error_msg
@ -587,9 +322,6 @@ def test_multi_daemon_subactors(
else:
raise ValueError("Neither log msg was found !?")
if ctlc:
do_ctlc(child)
# NOTE: previously since we did not have clobber prevention
# in the root actor this final resume could result in the debugger
# tearing down since both child actors would be cancelled and it was
@ -598,8 +330,10 @@ def test_multi_daemon_subactors(
# second entry by `bp_forever`.
child.sendline('c')
child.expect(PROMPT)
assert_before(child, [next_msg])
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert next_msg in before
# XXX: hooray the root clobbering the child here was fixed!
# IMO, this demonstrates the true power of SC system design.
@ -607,7 +341,7 @@ def test_multi_daemon_subactors(
# now the root actor won't clobber the bp_forever child
# during it's first access to the debug lock, but will instead
# wait for the lock to release, by the edge triggered
# ``_debug.Lock.no_remote_has_tty`` event before sending cancel messages
# ``_debug._no_remote_has_tty`` event before sending cancel messages
# (via portals) to its underlings B)
# at some point here there should have been some warning msg from
@ -615,149 +349,67 @@ def test_multi_daemon_subactors(
# it seems unreliable in testing here to gnab it:
# assert "in use by child ('bp_forever'," in before
if ctlc:
do_ctlc(child)
# expect another breakpoint actor entry
child.sendline('c')
child.expect(PROMPT)
try:
assert_before(child, [bp_forever_msg])
except AssertionError:
assert_before(child, [name_error_msg])
else:
if ctlc:
do_ctlc(child)
# should crash with the 2nd name error (simulates
# a retry) and then the root eventually (boxed) errors
# after 1 or more further bp actor entries.
child.sendline('c')
child.expect(PROMPT)
assert_before(child, [name_error_msg])
# wait for final error in root
# where it crashs with boxed error
while True:
try:
child.sendline('c')
child.expect(PROMPT)
assert_before(
child,
[bp_forever_msg]
)
except AssertionError:
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
try:
# root error should be packed as remote error
assert "_exceptions.RemoteActorError: ('name_error'" in before
break
assert_before(
child,
[
# boxed error raised in root task
"Attaching to pdb in crashed actor: ('root'",
"_exceptions.RemoteActorError: ('name_error'",
]
)
except AssertionError:
assert bp_forever_msg in before
try:
child.sendline('c')
child.expect(pexpect.EOF)
except pexpect.exceptions.TIMEOUT:
# Failed to exit using continue..?
child.sendline('q')
child.expect(pexpect.EOF)
@has_nested_actors
def test_multi_subactors_root_errors(
spawn,
ctlc: bool
):
'''
Multiple subactors, both erroring and breakpointing as well as
def test_multi_subactors_root_errors(spawn):
"""Multiple subactors, both erroring and breakpointing as well as
a nested subactor erroring.
'''
"""
child = spawn('multi_subactor_root_errors')
# scan for the prompt
child.expect(PROMPT)
# scan for the pdbpp prompt
child.expect(r"\(Pdb\+\+\)")
# at most one subactor should attach before the root is cancelled
before = str(child.before.decode())
assert "NameError: name 'doggypants' is not defined" in before
if ctlc:
do_ctlc(child)
# continue again to catch 2nd name error from
# actor 'name_error_1' (which is 2nd depth).
# continue again
child.sendline('c')
child.expect(r"\(Pdb\+\+\)")
# due to block list strat from #337, this will no longer
# propagate before the root errors and cancels the spawner sub-tree.
child.expect(PROMPT)
# only if the blocking condition doesn't kick in fast enough
# should now get attached in root with assert error
before = str(child.before.decode())
if "Debug lock blocked for ['name_error_1'" not in before:
assert_before(child, [
"Attaching to pdb in crashed actor: ('name_error_1'",
"NameError",
])
# should have come just after priot prompt
assert "Attaching to pdb in crashed actor: ('root'" in before
assert "AssertionError" in before
if ctlc:
do_ctlc(child)
child.sendline('c')
child.expect(PROMPT)
# check if the spawner crashed or was blocked from debug
# and if this intermediary attached check the boxed error
before = str(child.before.decode())
if "Attaching to pdb in crashed actor: ('spawn_error'" in before:
assert_before(child, [
# boxed error from spawner's child
"RemoteActorError: ('name_error_1'",
"NameError",
])
if ctlc:
do_ctlc(child)
child.sendline('c')
child.expect(PROMPT)
# expect a root actor crash
assert_before(child, [
"RemoteActorError: ('name_error'",
"NameError",
# error from root actor and root task that created top level nursery
"Attaching to pdb in crashed actor: ('root'",
"AssertionError",
])
# warnings assert we probably don't need
# assert "Cancelling nursery in ('spawn_error'," in before
# continue again
child.sendline('c')
child.expect(pexpect.EOF)
assert_before(child, [
# "Attaching to pdb in crashed actor: ('root'",
# boxed error from previous step
"RemoteActorError: ('name_error'",
"NameError",
"AssertionError",
'assert 0',
])
before = str(child.before.decode())
assert "AssertionError" in before
@has_nested_actors
def test_multi_nested_subactors_error_through_nurseries(
spawn,
# TODO: address debugger issue for nested tree:
# https://github.com/goodboy/tractor/issues/320
# ctlc: bool,
):
def test_multi_nested_subactors_error_through_nurseries(spawn):
"""Verify deeply nested actors that error trigger debugger entries
at each actor nurserly (level) all the way up the tree.
@ -772,70 +424,55 @@ def test_multi_nested_subactors_error_through_nurseries(
timed_out_early: bool = False
for send_char in itertools.cycle(['c', 'q']):
for i in range(12):
try:
child.expect(PROMPT)
child.sendline(send_char)
time.sleep(0.01)
child.expect(r"\(Pdb\+\+\)")
child.sendline('c')
time.sleep(0.1)
except EOF:
except pexpect.exceptions.EOF:
# race conditions on how fast the continue is sent?
print(f"Failed early on {i}?")
timed_out_early = True
break
else:
child.expect(pexpect.EOF)
assert_before(child, [
# boxed source errors
"NameError: name 'doggypants' is not defined",
"tractor._exceptions.RemoteActorError: ('name_error'",
"bdb.BdbQuit",
# first level subtrees
"tractor._exceptions.RemoteActorError: ('spawner0'",
# "tractor._exceptions.RemoteActorError: ('spawner1'",
# propagation of errors up through nested subtrees
"tractor._exceptions.RemoteActorError: ('spawn_until_0'",
"tractor._exceptions.RemoteActorError: ('spawn_until_1'",
"tractor._exceptions.RemoteActorError: ('spawn_until_2'",
])
if not timed_out_early:
before = str(child.before.decode())
assert "NameError" in before
@pytest.mark.timeout(15)
@has_nested_actors
def test_root_nursery_cancels_before_child_releases_tty_lock(
spawn,
start_method,
ctlc: bool,
start_method
):
'''
Test that when the root sends a cancel message before a nested child
has unblocked (which can happen when it has the tty lock and is
engaged in pdb) it is indeed cancelled after exiting the debugger.
'''
"""Test that when the root sends a cancel message before a nested
child has unblocked (which can happen when it has the tty lock and
is engaged in pdb) it is indeed cancelled after exiting the debugger.
"""
timed_out_early = False
child = spawn('root_cancelled_but_child_is_in_tty_lock')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "NameError: name 'doggypants' is not defined" in before
assert "tractor._exceptions.RemoteActorError: ('name_error'" not in before
time.sleep(0.5)
if ctlc:
do_ctlc(child)
child.sendline('c')
for i in range(4):
time.sleep(0.5)
try:
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
except (
EOF,
TIMEOUT,
pexpect.exceptions.EOF,
pexpect.exceptions.TIMEOUT,
):
# races all over..
@ -850,37 +487,26 @@ def test_root_nursery_cancels_before_child_releases_tty_lock(
before = str(child.before.decode())
assert "NameError: name 'doggypants' is not defined" in before
if ctlc:
do_ctlc(child)
child.sendline('c')
time.sleep(0.1)
for i in range(3):
while True:
try:
child.expect(pexpect.EOF, timeout=0.5)
child.expect(pexpect.EOF)
break
except TIMEOUT:
except pexpect.exceptions.TIMEOUT:
child.sendline('c')
time.sleep(0.1)
print('child was able to grab tty lock again?')
else:
print('giving up on child releasing, sending `quit` cmd')
child.sendline('q')
expect(child, EOF)
if not timed_out_early:
before = str(child.before.decode())
assert_before(child, [
"tractor._exceptions.RemoteActorError: ('spawner0'",
"tractor._exceptions.RemoteActorError: ('name_error'",
"NameError: name 'doggypants' is not defined",
])
assert "tractor._exceptions.RemoteActorError: ('spawner0'" in before
assert "tractor._exceptions.RemoteActorError: ('name_error'" in before
assert "NameError: name 'doggypants' is not defined" in before
def test_root_cancels_child_context_during_startup(
spawn,
ctlc: bool,
):
'''Verify a fast fail in the root doesn't lock up the child reaping
and all while using the new context api.
@ -888,46 +514,10 @@ def test_root_cancels_child_context_during_startup(
'''
child = spawn('fast_error_in_root_after_spawn')
child.expect(PROMPT)
child.expect(r"\(Pdb\+\+\)")
before = str(child.before.decode())
assert "AssertionError" in before
if ctlc:
do_ctlc(child)
child.sendline('c')
child.expect(pexpect.EOF)
def test_different_debug_mode_per_actor(
spawn,
ctlc: bool,
):
child = spawn('per_actor_debug')
child.expect(PROMPT)
# only one actor should enter the debugger
before = str(child.before.decode())
assert "Attaching to pdb in crashed actor: ('debugged_boi'" in before
assert "RuntimeError" in before
if ctlc:
do_ctlc(child)
child.sendline('c')
child.expect(pexpect.EOF)
before = str(child.before.decode())
# NOTE: this debugged actor error currently WON'T show up since the
# root will actually cancel and terminate the nursery before the error
# msg reported back from the debug mode actor is processed.
# assert "tractor._exceptions.RemoteActorError: ('debugged_boi'" in before
assert "tractor._exceptions.RemoteActorError: ('crash_boi'" in before
# the crash boi should not have made a debugger request but
# instead crashed completely
assert "tractor._exceptions.RemoteActorError: ('crash_boi'" in before
assert "RuntimeError" in before

View File

@ -116,26 +116,11 @@ async def stream_from(portal):
print(value)
async def unpack_reg(actor_or_portal):
'''
Get and unpack a "registry" RPC request from the "arbiter" registry
system.
'''
if getattr(actor_or_portal, 'get_registry', None):
msg = await actor_or_portal.get_registry()
else:
msg = await actor_or_portal.run_from_ns('self', 'get_registry')
return {tuple(key.split('.')): val for key, val in msg.items()}
async def spawn_and_check_registry(
arb_addr: tuple,
use_signal: bool,
remote_arbiter: bool = False,
with_streaming: bool = False,
) -> None:
async with tractor.open_root_actor(
@ -149,11 +134,13 @@ async def spawn_and_check_registry(
assert not actor.is_arbiter
if actor.is_arbiter:
extra = 1 # arbiter is local root actor
get_reg = partial(unpack_reg, actor)
async def get_reg():
return await actor.get_registry()
extra = 1 # arbiter is local root actor
else:
get_reg = partial(unpack_reg, portal)
get_reg = partial(portal.run_from_ns, 'self', 'get_registry')
extra = 2 # local root actor + remote arbiter
# ensure current actor is registered
@ -279,7 +266,7 @@ async def close_chans_before_nursery(
):
async with tractor.get_arbiter(*arb_addr) as aportal:
try:
get_reg = partial(unpack_reg, aportal)
get_reg = partial(aportal.run_from_ns, 'self', 'get_registry')
async with tractor.open_nursery() as tn:
portal1 = await tn.start_actor(

View File

@ -1,7 +1,6 @@
'''
"""
Let's make sure them docs work yah?
'''
"""
from contextlib import contextmanager
import itertools
import os
@ -12,17 +11,17 @@ import shutil
import pytest
from conftest import (
examples_dir,
)
from conftest import repodir
def examples_dir():
"""Return the abspath to the examples directory.
"""
return os.path.join(repodir(), 'examples')
@pytest.fixture
def run_example_in_subproc(
loglevel: str,
testdir,
arb_addr: tuple[str, int],
):
def run_example_in_subproc(loglevel, testdir, arb_addr):
@contextmanager
def run(script_code):
@ -32,8 +31,8 @@ def run_example_in_subproc(
# on windows we need to create a special __main__.py which will
# be executed with ``python -m <modulename>`` on windows..
shutil.copyfile(
examples_dir() / '__main__.py',
str(testdir / '__main__.py'),
os.path.join(examples_dir(), '__main__.py'),
os.path.join(str(testdir), '__main__.py')
)
# drop the ``if __name__ == '__main__'`` guard onwards from
@ -81,15 +80,11 @@ def run_example_in_subproc(
'example_script',
# walk yields: (dirpath, dirnames, filenames)
[
(p[0], f) for p in os.walk(examples_dir()) for f in p[2]
[(p[0], f) for p in os.walk(examples_dir()) for f in p[2]
if '__' not in f
and f[0] != '_'
and 'debugging' not in p[0]
and 'integration' not in p[0]
and 'advanced_faults' not in p[0]
],
and 'debugging' not in p[0]],
ids=lambda t: t[1],
)
@ -117,19 +112,9 @@ def test_example(run_example_in_subproc, example_script):
# print(f'STDOUT: {out}')
# if we get some gnarly output let's aggregate and raise
if err:
errmsg = err.decode()
errlines = errmsg.splitlines()
last_error = errlines[-1]
if (
'Error' in last_error
# XXX: currently we print this to console, but maybe
# shouldn't eventually once we figure out what's
# a better way to be explicit about aio side
# cancels?
and 'asyncio.exceptions.CancelledError' not in last_error
):
if err and 'Error' in errlines[-1]:
raise Exception(errmsg)
assert proc.returncode == 0

View File

@ -1,564 +1,24 @@
'''
The hipster way to force SC onto the stdlib's "async": 'infection mode'.
'''
from typing import Optional, Iterable, Union
import asyncio
import builtins
import itertools
import importlib
from exceptiongroup import BaseExceptionGroup
import pytest
import trio
import tractor
from tractor import (
to_asyncio,
RemoteActorError,
)
from tractor.trionics import BroadcastReceiver
async def sleep_and_err(
sleep_for: float = 0.1,
# just signature placeholders for compat with
# ``to_asyncio.open_channel_from()``
to_trio: Optional[trio.MemorySendChannel] = None,
from_trio: Optional[asyncio.Queue] = None,
):
if to_trio:
to_trio.send_nowait('start')
await asyncio.sleep(sleep_for)
async def sleep_and_err():
await asyncio.sleep(0.1)
assert 0
async def sleep_forever():
await asyncio.sleep(float('inf'))
async def trio_cancels_single_aio_task():
# spawn an ``asyncio`` task to run a func and return result
with trio.move_on_after(.2):
await tractor.to_asyncio.run_task(sleep_forever)
def test_trio_cancels_aio_on_actor_side(arb_addr):
'''
Spawn an infected actor that is cancelled by the ``trio`` side
task using std cancel scope apis.
'''
async def main():
async with tractor.open_nursery(
arbiter_addr=arb_addr
) as n:
await n.run_in_actor(
trio_cancels_single_aio_task,
infect_asyncio=True,
)
trio.run(main)
async def asyncio_actor(
target: str,
expect_err: Optional[Exception] = None
) -> None:
async def asyncio_actor():
assert tractor.current_actor().is_infected_aio()
target = globals()[target]
if '.' in expect_err:
modpath, _, name = expect_err.rpartition('.')
mod = importlib.import_module(modpath)
error_type = getattr(mod, name)
else: # toplevel builtin error type
error_type = builtins.__dict__.get(expect_err)
try:
# spawn an ``asyncio`` task to run a func and return result
await tractor.to_asyncio.run_task(target)
except BaseException as err:
if expect_err:
assert isinstance(err, error_type)
raise
await tractor.to_asyncio.run_task(sleep_and_err)
def test_aio_simple_error(arb_addr):
'''
Verify a simple remote asyncio error propagates back through trio
to the parent actor.
'''
async def main():
async with tractor.open_nursery(
arbiter_addr=arb_addr
) as n:
await n.run_in_actor(
asyncio_actor,
target='sleep_and_err',
expect_err='AssertionError',
infect_asyncio=True,
)
with pytest.raises(RemoteActorError) as excinfo:
trio.run(main)
err = excinfo.value
assert isinstance(err, RemoteActorError)
assert err.type == AssertionError
def test_tractor_cancels_aio(arb_addr):
'''
Verify we can cancel a spawned asyncio task gracefully.
'''
async def main():
async with tractor.open_nursery() as n:
portal = await n.run_in_actor(
asyncio_actor,
target='sleep_forever',
expect_err='trio.Cancelled',
infect_asyncio=True,
)
# cancel the entire remote runtime
await portal.cancel_actor()
trio.run(main)
def test_trio_cancels_aio(arb_addr):
'''
Much like the above test with ``tractor.Portal.cancel_actor()``
except we just use a standard ``trio`` cancellation api.
'''
async def main():
with trio.move_on_after(1):
# cancel the nursery shortly after boot
async with tractor.open_nursery() as n:
await n.run_in_actor(
asyncio_actor,
target='sleep_forever',
expect_err='trio.Cancelled',
infect_asyncio=True,
)
trio.run(main)
@tractor.context
async def trio_ctx(
ctx: tractor.Context,
):
await ctx.started('start')
# this will block until the ``asyncio`` task sends a "first"
# message.
with trio.fail_after(2):
async with (
trio.open_nursery() as n,
tractor.to_asyncio.open_channel_from(
sleep_and_err,
) as (first, chan),
):
assert first == 'start'
# spawn another asyncio task for the cuck of it.
n.start_soon(
tractor.to_asyncio.run_task,
sleep_forever,
)
await trio.sleep_forever()
@pytest.mark.parametrize(
'parent_cancels', [False, True],
ids='parent_actor_cancels_child={}'.format
)
def test_context_spawns_aio_task_that_errors(
arb_addr,
parent_cancels: bool,
):
'''
Verify that spawning a task via an intertask channel ctx mngr that
errors correctly propagates the error back from the `asyncio`-side
task.
'''
async def main():
with trio.fail_after(2):
async with tractor.open_nursery() as n:
p = await n.start_actor(
'aio_daemon',
enable_modules=[__name__],
infect_asyncio=True,
# debug_mode=True,
loglevel='cancel',
)
async with p.open_context(
trio_ctx,
) as (ctx, first):
assert first == 'start'
if parent_cancels:
await p.cancel_actor()
await trio.sleep_forever()
with pytest.raises(RemoteActorError) as excinfo:
trio.run(main)
err = excinfo.value
assert isinstance(err, RemoteActorError)
if parent_cancels:
assert err.type == trio.Cancelled
else:
assert err.type == AssertionError
async def aio_cancel():
''''
Cancel urself boi.
'''
await asyncio.sleep(0.5)
task = asyncio.current_task()
# cancel and enter sleep
task.cancel()
await sleep_forever()
def test_aio_cancelled_from_aio_causes_trio_cancelled(arb_addr):
def test_infected_simple_error(arb_addr):
async def main():
async with tractor.open_nursery() as n:
await n.run_in_actor(
asyncio_actor,
target='aio_cancel',
expect_err='tractor.to_asyncio.AsyncioCancelled',
infect_asyncio=True,
)
await n.run_in_actor(asyncio_actor, infected_asyncio=True)
with pytest.raises(RemoteActorError) as excinfo:
trio.run(main)
# ensure boxed error is correct
assert excinfo.value.type == to_asyncio.AsyncioCancelled
# TODO: verify open_channel_from will fail on this..
async def no_to_trio_in_args():
pass
async def push_from_aio_task(
sequence: Iterable,
to_trio: trio.abc.SendChannel,
expect_cancel: False,
fail_early: bool,
) -> None:
try:
# sync caller ctx manager
to_trio.send_nowait(True)
for i in sequence:
print(f'asyncio sending {i}')
to_trio.send_nowait(i)
await asyncio.sleep(0.001)
if i == 50 and fail_early:
raise Exception
print('asyncio streamer complete!')
except asyncio.CancelledError:
if not expect_cancel:
pytest.fail("aio task was cancelled unexpectedly")
raise
else:
if expect_cancel:
pytest.fail("aio task wasn't cancelled as expected!?")
async def stream_from_aio(
exit_early: bool = False,
raise_err: bool = False,
aio_raise_err: bool = False,
fan_out: bool = False,
) -> None:
seq = range(100)
expect = list(seq)
try:
pulled = []
async with to_asyncio.open_channel_from(
push_from_aio_task,
sequence=seq,
expect_cancel=raise_err or exit_early,
fail_early=aio_raise_err,
) as (first, chan):
assert first is True
async def consume(
chan: Union[
to_asyncio.LinkedTaskChannel,
BroadcastReceiver,
],
):
async for value in chan:
print(f'trio received {value}')
pulled.append(value)
if value == 50:
if raise_err:
raise Exception
elif exit_early:
break
if fan_out:
# start second task that get's the same stream value set.
async with (
# NOTE: this has to come first to avoid
# the channel being closed before the nursery
# tasks are joined..
chan.subscribe() as br,
trio.open_nursery() as n,
):
n.start_soon(consume, br)
await consume(chan)
else:
await consume(chan)
finally:
if (
not raise_err and
not exit_early and
not aio_raise_err
):
if fan_out:
# we get double the pulled values in the
# ``.subscribe()`` fan out case.
doubled = list(itertools.chain(*zip(expect, expect)))
expect = doubled[:len(pulled)]
assert list(sorted(pulled)) == expect
else:
assert pulled == expect
else:
assert not fan_out
assert pulled == expect[:51]
print('trio guest mode task completed!')
@pytest.mark.parametrize(
'fan_out', [False, True],
ids='fan_out_w_chan_subscribe={}'.format
)
def test_basic_interloop_channel_stream(arb_addr, fan_out):
async def main():
async with tractor.open_nursery() as n:
portal = await n.run_in_actor(
stream_from_aio,
infect_asyncio=True,
fan_out=fan_out,
)
await portal.result()
trio.run(main)
# TODO: parametrize the above test and avoid the duplication here?
def test_trio_error_cancels_intertask_chan(arb_addr):
async def main():
async with tractor.open_nursery() as n:
portal = await n.run_in_actor(
stream_from_aio,
raise_err=True,
infect_asyncio=True,
)
# should trigger remote actor error
await portal.result()
with pytest.raises(BaseExceptionGroup) as excinfo:
trio.run(main)
# ensure boxed errors
for exc in excinfo.value.exceptions:
assert exc.type == Exception
def test_trio_closes_early_and_channel_exits(arb_addr):
async def main():
async with tractor.open_nursery() as n:
portal = await n.run_in_actor(
stream_from_aio,
exit_early=True,
infect_asyncio=True,
)
# should trigger remote actor error
await portal.result()
# should be a quiet exit on a simple channel exit
trio.run(main)
def test_aio_errors_and_channel_propagates_and_closes(arb_addr):
async def main():
async with tractor.open_nursery() as n:
portal = await n.run_in_actor(
stream_from_aio,
aio_raise_err=True,
infect_asyncio=True,
)
# should trigger remote actor error
await portal.result()
with pytest.raises(BaseExceptionGroup) as excinfo:
trio.run(main)
# ensure boxed errors
for exc in excinfo.value.exceptions:
assert exc.type == Exception
@tractor.context
async def trio_to_aio_echo_server(
ctx: tractor.Context,
):
async def aio_echo_server(
to_trio: trio.MemorySendChannel,
from_trio: asyncio.Queue,
) -> None:
to_trio.send_nowait('start')
while True:
msg = await from_trio.get()
# echo the msg back
to_trio.send_nowait(msg)
# if we get the terminate sentinel
# break the echo loop
if msg is None:
print('breaking aio echo loop')
break
print('exiting asyncio task')
async with to_asyncio.open_channel_from(
aio_echo_server,
) as (first, chan):
assert first == 'start'
await ctx.started(first)
async with ctx.open_stream() as stream:
async for msg in stream:
print(f'asyncio echoing {msg}')
await chan.send(msg)
out = await chan.receive()
# echo back to parent actor-task
await stream.send(out)
if out is None:
try:
out = await chan.receive()
except trio.EndOfChannel:
break
else:
raise RuntimeError('aio channel never stopped?')
@pytest.mark.parametrize(
'raise_error_mid_stream',
[False, Exception, KeyboardInterrupt],
ids='raise_error={}'.format,
)
def test_echoserver_detailed_mechanics(
arb_addr,
raise_error_mid_stream,
):
async def main():
async with tractor.open_nursery() as n:
p = await n.start_actor(
'aio_server',
enable_modules=[__name__],
infect_asyncio=True,
)
async with p.open_context(
trio_to_aio_echo_server,
) as (ctx, first):
assert first == 'start'
async with ctx.open_stream() as stream:
for i in range(100):
await stream.send(i)
out = await stream.receive()
assert i == out
if raise_error_mid_stream and i == 50:
raise raise_error_mid_stream
# send terminate msg
await stream.send(None)
out = await stream.receive()
assert out is None
if out is None:
# ensure the stream is stopped
# with trio.fail_after(0.1):
try:
await stream.receive()
except trio.EndOfChannel:
pass
else:
pytest.fail(
"stream wasn't stopped after sentinel?!")
# TODO: the case where this blocks and
# is cancelled by kbi or out of task cancellation
await p.cancel_actor()
if raise_error_mid_stream:
with pytest.raises(raise_error_mid_stream):
trio.run(main)
else:
trio.run(main)
with pytest.raises(tractor.RemoteActorError) as excinfo:
tractor.run(main, arbiter_addr=arb_addr)

View File

@ -11,7 +11,7 @@ from conftest import tractor_test
@pytest.mark.trio
async def test_no_runtime():
async def test_no_arbitter():
"""An arbitter must be established before any nurseries
can be created.
@ -19,10 +19,17 @@ async def test_no_runtime():
some point?)
"""
with pytest.raises(RuntimeError):
async with tractor.find_actor('doggy'):
with tractor.open_nursery():
pass
def test_no_main():
"""An async function **must** be passed to ``tractor.run()``.
"""
with pytest.raises(TypeError):
tractor.run(None)
@tractor_test
async def test_self_is_registered(arb_addr):
"Verify waiting on the arbiter to register itself using the standard api."

View File

@ -4,22 +4,20 @@ from itertools import cycle
import pytest
import trio
import tractor
from tractor.experimental import msgpub
from conftest import tractor_test
from tractor.testing import tractor_test
def test_type_checks():
with pytest.raises(TypeError) as err:
@msgpub
@tractor.msg.pub
async def no_get_topics(yo):
yield
assert "must define a `get_topics`" in str(err.value)
with pytest.raises(TypeError) as err:
@msgpub
@tractor.msg.pub
def not_async_gen(yo):
pass
@ -34,7 +32,7 @@ def is_even(i):
_get_topics = None
@msgpub
@tractor.msg.pub
async def pubber(get_topics, seed=10):
# ensure topic subscriptions are as expected
@ -105,7 +103,7 @@ async def subs(
await stream.aclose()
@msgpub(tasks=['one', 'two'])
@tractor.msg.pub(tasks=['one', 'two'])
async def multilock_pubber(get_topics):
yield {'doggy': 10}

View File

@ -1,182 +0,0 @@
'''
Async context manager cache api testing: ``trionics.maybe_open_context():``
'''
from contextlib import asynccontextmanager as acm
import platform
from typing import Awaitable
import pytest
import trio
import tractor
_resource: int = 0
@acm
async def maybe_increment_counter(task_name: str):
global _resource
_resource += 1
await trio.lowlevel.checkpoint()
yield _resource
await trio.lowlevel.checkpoint()
_resource -= 1
@pytest.mark.parametrize(
'key_on',
['key_value', 'kwargs'],
ids="key_on={}".format,
)
def test_resource_only_entered_once(key_on):
global _resource
_resource = 0
kwargs = {}
key = None
if key_on == 'key_value':
key = 'some_common_key'
async def main():
cache_active: bool = False
async def enter_cached_mngr(name: str):
nonlocal cache_active
if key_on == 'kwargs':
# make a common kwargs input to key on it
kwargs = {'task_name': 'same_task_name'}
assert key is None
else:
# different task names per task will be used
kwargs = {'task_name': name}
async with tractor.trionics.maybe_open_context(
maybe_increment_counter,
kwargs=kwargs,
key=key,
) as (cache_hit, resource):
if cache_hit:
try:
cache_active = True
assert resource == 1
await trio.sleep_forever()
finally:
cache_active = False
else:
assert resource == 1
await trio.sleep_forever()
with trio.move_on_after(0.5):
async with (
tractor.open_root_actor(),
trio.open_nursery() as n,
):
for i in range(10):
n.start_soon(enter_cached_mngr, f'task_{i}')
await trio.sleep(0.001)
trio.run(main)
@tractor.context
async def streamer(
ctx: tractor.Context,
seq: list[int] = list(range(1000)),
) -> None:
await ctx.started()
async with ctx.open_stream() as stream:
for val in seq:
await stream.send(val)
await trio.sleep(0.001)
print('producer finished')
@acm
async def open_stream() -> Awaitable[tractor.MsgStream]:
async with tractor.open_nursery() as tn:
portal = await tn.start_actor('streamer', enable_modules=[__name__])
async with (
portal.open_context(streamer) as (ctx, first),
ctx.open_stream() as stream,
):
yield stream
await portal.cancel_actor()
print('CANCELLED STREAMER')
@acm
async def maybe_open_stream(taskname: str):
async with tractor.trionics.maybe_open_context(
# NOTE: all secondary tasks should cache hit on the same key
acm_func=open_stream,
) as (cache_hit, stream):
if cache_hit:
print(f'{taskname} loaded from cache')
# add a new broadcast subscription for the quote stream
# if this feed is already allocated by the first
# task that entereed
async with stream.subscribe() as bstream:
yield bstream
else:
# yield the actual stream
yield stream
def test_open_local_sub_to_stream():
'''
Verify a single inter-actor stream can can be fanned-out shared to
N local tasks using ``trionics.maybe_open_context():``.
'''
timeout = 3 if platform.system() != "Windows" else 10
async def main():
full = list(range(1000))
async def get_sub_and_pull(taskname: str):
async with (
maybe_open_stream(taskname) as stream,
):
if '0' in taskname:
assert isinstance(stream, tractor.MsgStream)
else:
assert isinstance(
stream,
tractor.trionics.BroadcastReceiver
)
first = await stream.receive()
print(f'{taskname} started with value {first}')
seq = []
async for msg in stream:
seq.append(msg)
assert set(seq).issubset(set(full))
print(f'{taskname} finished')
with trio.fail_after(timeout):
# TODO: turns out this isn't multi-task entrant XD
# We probably need an indepotent entry semantic?
async with tractor.open_root_actor():
async with (
trio.open_nursery() as nurse,
):
for i in range(10):
nurse.start_soon(get_sub_and_pull, f'task_{i}')
await trio.sleep(0.001)
print('all consumer tasks finished')
trio.run(main)

View File

@ -1,73 +0,0 @@
"""
Verifying internal runtime state and undocumented extras.
"""
import os
import pytest
import trio
import tractor
from conftest import tractor_test
_file_path: str = ''
def unlink_file():
print('Removing tmp file!')
os.remove(_file_path)
async def crash_and_clean_tmpdir(
tmp_file_path: str,
error: bool = True,
):
global _file_path
_file_path = tmp_file_path
actor = tractor.current_actor()
actor.lifetime_stack.callback(unlink_file)
assert os.path.isfile(tmp_file_path)
await trio.sleep(0.1)
if error:
assert 0
else:
actor.cancel_soon()
@pytest.mark.parametrize(
'error_in_child',
[True, False],
)
@tractor_test
async def test_lifetime_stack_wipes_tmpfile(
tmp_path,
error_in_child: bool,
):
child_tmp_file = tmp_path / "child.txt"
child_tmp_file.touch()
assert child_tmp_file.exists()
path = str(child_tmp_file)
try:
with trio.move_on_after(0.5):
async with tractor.open_nursery() as n:
await ( # inlined portal
await n.run_in_actor(
crash_and_clean_tmpdir,
tmp_file_path=path,
error=error_in_child,
)
).result()
except (
tractor.RemoteActorError,
tractor.BaseExceptionGroup,
):
pass
# tmp file should have been wiped by
# teardown stack.
assert not child_tmp_file.exists()

View File

@ -1,8 +1,7 @@
"""
Spawning basics
"""
from typing import Optional
from typing import Dict, Tuple
import pytest
import trio
@ -15,8 +14,8 @@ data_to_pass_down = {'doggy': 10, 'kitty': 4}
async def spawn(
is_arbiter: bool,
data: dict,
arb_addr: tuple[str, int],
data: Dict,
arb_addr: Tuple[str, int],
):
namespaces = [__name__]
@ -94,38 +93,24 @@ async def test_movie_theatre_convo(start_method):
await portal.cancel_actor()
async def cellar_door(return_value: Optional[str]):
return return_value
async def cellar_door():
return "Dang that's beautiful"
@pytest.mark.parametrize(
'return_value', ["Dang that's beautiful", None],
ids=['return_str', 'return_None'],
)
@tractor_test
async def test_most_beautiful_word(
start_method,
return_value
):
'''
The main ``tractor`` routine.
'''
with trio.fail_after(1):
async def test_most_beautiful_word(start_method):
"""The main ``tractor`` routine.
"""
async with tractor.open_nursery() as n:
portal = await n.run_in_actor(
cellar_door,
return_value=return_value,
name='some_linguist',
)
print(await portal.result())
# The ``async with`` will unblock here since the 'some_linguist'
# actor has completed its main task ``cellar_door``.
# this should pull the cached final result already captured during
# the nursery block exit.
print(await portal.result())
@ -142,7 +127,7 @@ def test_loglevel_propagated_to_subactor(
capfd,
arb_addr,
):
if start_method == 'mp_forkserver':
if start_method == 'forkserver':
pytest.skip(
"a bug with `capfd` seems to make forkserver capture not work?")
@ -151,13 +136,13 @@ def test_loglevel_propagated_to_subactor(
async def main():
async with tractor.open_nursery(
name='arbiter',
loglevel=level,
start_method=start_method,
arbiter_addr=arb_addr,
) as tn:
await tn.run_in_actor(
check_loglevel,
loglevel=level,
level=level,
)

View File

@ -7,10 +7,9 @@ import platform
import trio
import tractor
from tractor.testing import tractor_test
import pytest
from conftest import tractor_test
def test_must_define_ctx():
@ -80,7 +79,6 @@ async def stream_from_single_subactor(
seq = range(10)
with trio.fail_after(5):
async with portal.open_stream_from(
stream_func,
sequence=list(seq), # has to be msgpack serializable
@ -102,14 +100,12 @@ async def stream_from_single_subactor(
await trio.sleep(0.3)
# ensure EOC signalled-state translates
# XXX: not really sure this is correct,
# shouldn't it be a `ClosedResourceError`?
try:
await stream.__anext__()
except StopAsyncIteration:
# stop all spawned subactors
await portal.cancel_actor()
# await nursery.cancel()
@pytest.mark.parametrize(
@ -136,7 +132,7 @@ async def stream_data(seed):
yield i
# trigger scheduler to simulate practical usage
await trio.sleep(0.0001)
await trio.sleep(0)
# this is the third actor; the aggregator
@ -251,7 +247,7 @@ def test_a_quadruple_example(time_quad_ex, ci_env, spawn_backend):
results, diff = time_quad_ex
assert results
this_fast = 6 if platform.system() in ('Windows', 'Darwin') else 3
this_fast = 6 if platform.system() in ('Windows', 'Darwin') else 2.5
assert diff < this_fast

View File

@ -6,16 +6,13 @@ from contextlib import asynccontextmanager
from functools import partial
from itertools import cycle
import time
from typing import Optional
from typing import Optional, List, Tuple
import pytest
import trio
from trio.lowlevel import current_task
import tractor
from tractor.trionics import (
broadcast_receiver,
Lagged,
)
from tractor.trionics import broadcast_receiver, Lagged
@tractor.context
@ -40,7 +37,7 @@ async def echo_sequences(
async def ensure_sequence(
stream: tractor.MsgStream,
stream: tractor.ReceiveMsgStream,
sequence: list,
delay: Optional[float] = None,
@ -65,8 +62,8 @@ async def ensure_sequence(
@asynccontextmanager
async def open_sequence_streamer(
sequence: list[int],
arb_addr: tuple[str, int],
sequence: List[int],
arb_addr: Tuple[str, int],
start_method: str,
) -> tractor.MsgStream:
@ -86,7 +83,7 @@ async def open_sequence_streamer(
) as (ctx, first):
assert first is None
async with ctx.open_stream(backpressure=True) as stream:
async with ctx.open_stream() as stream:
yield stream
await portal.cancel_actor()
@ -214,8 +211,7 @@ def test_faster_task_to_recv_is_cancelled_by_slower(
arb_addr,
start_method,
):
'''
Ensure that if a faster task consuming from a stream is cancelled
'''Ensure that if a faster task consuming from a stream is cancelled
the slower task can continue to receive all expected values.
'''
@ -338,7 +334,7 @@ def test_ensure_slow_consumers_lag_out(
if task.name == 'sub_1':
# trigger checkpoint to clean out other subs
await trio.sleep(0.01)
await trio.sleep(0)
# the non-lagger got
# a ``trio.EndOfChannel``
@ -405,7 +401,7 @@ def test_ensure_slow_consumers_lag_out(
assert not tx._state.open_send_channels
# check that "first" bcaster that we created
# above, never was iterated and is thus overrun
# above, never wass iterated and is thus overrun
try:
await brx.receive()
except Lagged:
@ -464,51 +460,3 @@ def test_first_recver_is_cancelled():
assert value == 1
trio.run(main)
def test_no_raise_on_lag():
'''
Run a simple 2-task broadcast where one task is slow but configured
so that it does not raise `Lagged` on overruns using
`raise_on_lasg=False` and verify that the task does not raise.
'''
size = 100
tx, rx = trio.open_memory_channel(size)
brx = broadcast_receiver(rx, size)
async def slow():
async with brx.subscribe(
raise_on_lag=False,
) as br:
async for msg in br:
print(f'slow task got: {msg}')
await trio.sleep(0.1)
async def fast():
async with brx.subscribe() as br:
async for msg in br:
print(f'fast task got: {msg}')
async def main():
async with (
tractor.open_root_actor(
# NOTE: so we see the warning msg emitted by the bcaster
# internals when the no raise flag is set.
loglevel='warning',
),
trio.open_nursery() as n,
):
n.start_soon(slow)
n.start_soon(fast)
for i in range(1000):
await tx.send(i)
# simulate user nailing ctl-c after realizing
# there's a lag in the slow task.
await trio.sleep(1)
raise KeyboardInterrupt
with pytest.raises(KeyboardInterrupt):
trio.run(main)

View File

@ -1,82 +0,0 @@
'''
Reminders for oddities in `trio` that we need to stay aware of and/or
want to see changed.
'''
import pytest
import trio
from trio_typing import TaskStatus
@pytest.mark.parametrize(
'use_start_soon', [
pytest.param(
True,
marks=pytest.mark.xfail(reason="see python-trio/trio#2258")
),
False,
]
)
def test_stashed_child_nursery(use_start_soon):
_child_nursery = None
async def waits_on_signal(
ev: trio.Event(),
task_status: TaskStatus[trio.Nursery] = trio.TASK_STATUS_IGNORED,
):
'''
Do some stuf, then signal other tasks, then yield back to "starter".
'''
await ev.wait()
task_status.started()
async def mk_child_nursery(
task_status: TaskStatus = trio.TASK_STATUS_IGNORED,
):
'''
Allocate a child sub-nursery and stash it as a global.
'''
nonlocal _child_nursery
async with trio.open_nursery() as cn:
_child_nursery = cn
task_status.started(cn)
# block until cancelled by parent.
await trio.sleep_forever()
async def sleep_and_err(
ev: trio.Event,
task_status: TaskStatus = trio.TASK_STATUS_IGNORED,
):
await trio.sleep(0.5)
doggy() # noqa
ev.set()
task_status.started()
async def main():
async with (
trio.open_nursery() as pn,
):
cn = await pn.start(mk_child_nursery)
assert cn
ev = trio.Event()
if use_start_soon:
# this causes inf hang
cn.start_soon(sleep_and_err, ev)
else:
# this does not.
await cn.start(sleep_and_err, ev)
with trio.fail_after(1):
await cn.start(waits_on_signal, ev)
with pytest.raises(NameError):
trio.run(main)

7
towncrier.toml 100644
View File

@ -0,0 +1,7 @@
[tool.towncrier]
package = "tractor"
filename = "NEWS.rst"
directory = "newsfragments/"
title_format = "tractor {version} ({project_date})"
version = "0.1.0a2"
#template = "changelog/_template.rst"

View File

@ -1,86 +1,54 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
tractor: structured concurrent "actors".
tractor: An actor model micro-framework built on
``trio`` and ``multiprocessing``.
"""
from exceptiongroup import BaseExceptionGroup
from trio import MultiError
from ._clustering import open_actor_cluster
from ._ipc import Channel
from ._streaming import (
Context,
ReceiveMsgStream,
MsgStream,
stream,
context,
)
from ._discovery import (
get_arbiter,
find_actor,
wait_for_actor,
query_actor,
)
from ._discovery import get_arbiter, find_actor, wait_for_actor
from ._supervise import open_nursery
from ._state import (
current_actor,
is_root_process,
)
from ._state import current_actor, is_root_process
from ._exceptions import (
RemoteActorError,
ModuleNotExposed,
ContextCancelled,
)
from ._debug import (
breakpoint,
post_mortem,
)
from ._debug import breakpoint, post_mortem
from . import msg
from ._root import (
run_daemon,
open_root_actor,
)
from ._root import run, run_daemon, open_root_actor
from ._portal import Portal
from ._runtime import Actor
__all__ = [
'Actor',
'Channel',
'Context',
'ContextCancelled',
'ModuleNotExposed',
'MsgStream',
'BaseExceptionGroup',
'Portal',
'MultiError',
'RemoteActorError',
'ContextCancelled',
'breakpoint',
'context',
'current_actor',
'find_actor',
'get_arbiter',
'is_root_process',
'msg',
'open_actor_cluster',
'open_nursery',
'open_root_actor',
'Portal',
'post_mortem',
'query_actor',
'run',
'run_daemon',
'stream',
'context',
'ReceiveMsgStream',
'MsgStream',
'to_asyncio',
'wait_for_actor',
]

1392
tractor/_actor.py 100644

File diff suppressed because it is too large Load Diff

View File

@ -1,22 +1,4 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
This is the "bootloader" for actors started using the native trio backend.
"""This is the "bootloader" for actors started using the native trio backend.
"""
import sys
import trio
@ -24,7 +6,7 @@ import argparse
from ast import literal_eval
from ._runtime import Actor
from ._actor import Actor
from ._entry import _trio_main

View File

@ -1,25 +1,7 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Actor cluster helpers.
'''
from __future__ import annotations
from contextlib import asynccontextmanager as acm
from multiprocessing import cpu_count
from typing import AsyncGenerator, Optional
@ -30,45 +12,39 @@ import tractor
@acm
async def open_actor_cluster(
modules: list[str],
count: int = cpu_count(),
names: list[str] | None = None,
hard_kill: bool = False,
# passed through verbatim to ``open_root_actor()``
**runtime_kwargs,
names: Optional[list[str]] = None,
) -> AsyncGenerator[
dict[str, tractor.Portal],
None,
list[str],
dict[str, tractor.Portal]
]:
portals: dict[str, tractor.Portal] = {}
uid = tractor.current_actor().uid
if not names:
names = [f'worker_{i}' for i in range(count)]
suffix = '_'.join(uid)
names = [f'worker_{i}.' + suffix for i in range(count)]
if not len(names) == count:
raise ValueError(
'Number of names is {len(names)} but count it {count}')
async with tractor.open_nursery(
**runtime_kwargs,
) as an:
async with tractor.open_nursery() as an:
async with trio.open_nursery() as n:
uid = tractor.current_actor().uid
for index, key in zip(range(count), names):
async def _start(name: str) -> None:
name = f'{uid[0]}.{name}'
portals[name] = await an.start_actor(
async def start(i) -> None:
key = f'worker_{i}.' + '_'.join(uid)
portals[key] = await an.start_actor(
enable_modules=modules,
name=name,
name=key,
)
for name in names:
n.start_soon(_start, name)
n.start_soon(start, index)
assert len(portals) == count
yield portals
await an.cancel(hard_kill=hard_kill)

File diff suppressed because it is too large Load Diff

View File

@ -1,29 +1,9 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Actor discovery API.
"""
from typing import (
Optional,
Union,
AsyncGenerator,
)
from contextlib import asynccontextmanager as acm
import typing
from typing import Tuple, Optional, Union
from async_generator import asynccontextmanager
from ._ipc import _connect_chan, Channel
from ._portal import (
@ -34,13 +14,13 @@ from ._portal import (
from ._state import current_actor, _runtime_vars
@acm
@asynccontextmanager
async def get_arbiter(
host: str,
port: int,
) -> AsyncGenerator[Union[Portal, LocalPortal], None]:
) -> typing.AsyncGenerator[Union[Portal, LocalPortal], None]:
'''Return a portal instance connected to a local or remote
arbiter.
'''
@ -61,10 +41,10 @@ async def get_arbiter(
yield arb_portal
@acm
@asynccontextmanager
async def get_root(
**kwargs,
) -> AsyncGenerator[Portal, None]:
) -> typing.AsyncGenerator[Union[Portal, LocalPortal], None]:
host, port = _runtime_vars['_root_mailbox']
assert host is not None
@ -74,56 +54,28 @@ async def get_root(
yield portal
@acm
async def query_actor(
@asynccontextmanager
async def find_actor(
name: str,
arbiter_sockaddr: Optional[tuple[str, int]] = None,
arbiter_sockaddr: Tuple[str, int] = None
) -> typing.AsyncGenerator[Optional[Portal], None]:
"""Ask the arbiter to find actor(s) by name.
) -> AsyncGenerator[tuple[str, int], None]:
'''
Simple address lookup for a given actor name.
Returns the (socket) address or ``None``.
'''
Returns a connected portal to the last registered matching actor
known to the arbiter.
"""
actor = current_actor()
async with get_arbiter(
*arbiter_sockaddr or actor._arb_addr
) as arb_portal:
async with get_arbiter(*arbiter_sockaddr or actor._arb_addr) as arb_portal:
sockaddr = await arb_portal.run_from_ns(
'self',
'find_actor',
name=name,
)
sockaddr = await arb_portal.run_from_ns('self', 'find_actor', name=name)
# TODO: return portals to all available actors - for now just
# the last one that registered
if name == 'arbiter' and actor.is_arbiter:
raise RuntimeError("The current actor is the arbiter")
yield sockaddr if sockaddr else None
elif sockaddr:
@acm
async def find_actor(
name: str,
arbiter_sockaddr: tuple[str, int] | None = None
) -> AsyncGenerator[Optional[Portal], None]:
'''
Ask the arbiter to find actor(s) by name.
Returns a connected portal to the last registered matching actor
known to the arbiter.
'''
async with query_actor(
name=name,
arbiter_sockaddr=arbiter_sockaddr,
) as sockaddr:
if sockaddr:
async with _connect_chan(*sockaddr) as chan:
async with open_portal(chan) as portal:
yield portal
@ -131,25 +83,20 @@ async def find_actor(
yield None
@acm
@asynccontextmanager
async def wait_for_actor(
name: str,
arbiter_sockaddr: tuple[str, int] | None = None
) -> AsyncGenerator[Portal, None]:
arbiter_sockaddr: Tuple[str, int] = None
) -> typing.AsyncGenerator[Portal, None]:
"""Wait on an actor to register with the arbiter.
A portal to the first registered actor is returned.
"""
actor = current_actor()
async with get_arbiter(
*arbiter_sockaddr or actor._arb_addr,
) as arb_portal:
sockaddrs = await arb_portal.run_from_ns(
'self',
'wait_for_actor',
name=name,
)
async with get_arbiter(*arbiter_sockaddr or actor._arb_addr) as arb_portal:
sockaddrs = await arb_portal.run_from_ns('self', 'wait_for_actor', name=name)
sockaddr = sockaddrs[-1]
async with _connect_chan(*sockaddr) as chan:

View File

@ -1,64 +1,30 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Sub-process entry points.
"""
from __future__ import annotations
from functools import partial
from typing import (
Any,
TYPE_CHECKING,
)
from typing import Tuple, Any
import signal
import trio # type: ignore
from .log import (
get_console_log,
get_logger,
)
from .log import get_console_log, get_logger
from . import _state
from .to_asyncio import run_as_asyncio_guest
from ._runtime import (
async_main,
Actor,
)
if TYPE_CHECKING:
from ._spawn import SpawnMethodKey
log = get_logger(__name__)
def _mp_main(
actor: Actor, # type: ignore
accept_addr: tuple[str, int],
forkserver_info: tuple[Any, Any, Any, Any, Any],
start_method: SpawnMethodKey,
parent_addr: tuple[str, int] | None = None,
actor: 'Actor', # type: ignore
accept_addr: Tuple[str, int],
forkserver_info: Tuple[Any, Any, Any, Any, Any],
start_method: str,
parent_addr: Tuple[str, int] = None,
infect_asyncio: bool = False,
) -> None:
'''
The routine called *after fork* which invokes a fresh ``trio.run``
'''
"""The routine called *after fork* which invokes a fresh ``trio.run``
"""
actor._forkserver_info = forkserver_info
from ._spawn import try_set_start_method
spawn_ctx = try_set_start_method(start_method)
@ -76,8 +42,7 @@ def _mp_main(
log.debug(f"parent_addr is {parent_addr}")
trio_main = partial(
async_main,
actor,
actor._async_main,
accept_addr,
parent_addr=parent_addr
)
@ -95,19 +60,20 @@ def _mp_main(
def _trio_main(
actor: Actor, # type: ignore
actor: 'Actor', # type: ignore
*,
parent_addr: tuple[str, int] | None = None,
parent_addr: Tuple[str, int] = None,
infect_asyncio: bool = False,
) -> None:
'''
"""
Entry point for a `trio_run_in_process` subactor.
'''
"""
log.info(f"Started new trio process for {actor.uid}")
# Disable sigint handling in children?
# signal.signal(signal.SIGINT, signal.SIG_IGN)
if actor.loglevel is not None:
log.info(
f"Setting loglevel for {actor.uid} to {actor.loglevel}")
@ -120,8 +86,7 @@ def _trio_main(
log.debug(f"parent_addr is {parent_addr}")
trio_main = partial(
async_main,
actor,
actor._async_main,
parent_addr=parent_addr
)

View File

@ -1,33 +1,11 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Our classy exception set.
"""
from typing import (
Any,
Optional,
Type,
)
from typing import Dict, Any, Optional, Type
import importlib
import builtins
import traceback
import exceptiongroup as eg
import trio
@ -53,6 +31,9 @@ class RemoteActorError(Exception):
self.type = suberror_type
self.msgdata = msgdata
# TODO: a trio.MultiError.catch like context manager
# for catching underlying remote errors of a particular type
class InternalActorError(RemoteActorError):
"""Remote internal ``tractor`` error indicating
@ -80,24 +61,11 @@ class NoRuntime(RuntimeError):
"The root actor has not been initialized yet"
class StreamOverrun(trio.TooSlowError):
"This stream was overrun by sender"
class AsyncioCancelled(Exception):
'''
Asyncio cancelled translation (non-base) error
for use with the ``to_asyncio`` module
to be raised in the ``trio`` side task
'''
def pack_error(
exc: BaseException,
tb=None,
) -> dict[str, Any]:
) -> Dict[str, Any]:
"""Create an "error message" for tranmission over
a channel (aka the wire).
"""
@ -116,17 +84,15 @@ def pack_error(
def unpack_error(
msg: dict[str, Any],
msg: Dict[str, Any],
chan=None,
err_type=RemoteActorError
) -> Exception:
'''
Unpack an 'error' message from the wire
"""Unpack an 'error' message from the wire
into a local ``RemoteActorError``.
'''
__tracebackhide__ = True
"""
error = msg['error']
tb_str = error.get('tb_str', '')
@ -139,12 +105,7 @@ def unpack_error(
suberror_type = trio.Cancelled
else: # try to lookup a suitable local error type
for ns in [
builtins,
_this_mod,
eg,
trio,
]:
for ns in [builtins, _this_mod, trio]:
try:
suberror_type = getattr(ns, type_name)
break
@ -163,15 +124,12 @@ def unpack_error(
def is_multi_cancelled(exc: BaseException) -> bool:
'''
Predicate to determine if a possible ``eg.BaseExceptionGroup`` contains
only ``trio.Cancelled`` sub-exceptions (and is likely the result of
"""Predicate to determine if a ``trio.MultiError`` contains only
``trio.Cancelled`` sub-exceptions (and is likely the result of
cancelling a collection of subtasks.
'''
if isinstance(exc, eg.BaseExceptionGroup):
return exc.subgroup(
lambda exc: isinstance(exc, trio.Cancelled)
) is not None
return False
"""
return not trio.MultiError.filter(
lambda exc: exc if not isinstance(exc, trio.Cancelled) else None,
exc,
)

View File

@ -1,19 +1,3 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
This is near-copy of the 3.8 stdlib's ``multiprocessing.forkserver.py``
with some hackery to prevent any more then a single forkserver and

View File

@ -1,19 +1,3 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Inter-process comms abstractions
@ -22,21 +6,13 @@ from __future__ import annotations
import platform
import struct
import typing
from collections.abc import (
AsyncGenerator,
AsyncIterator,
)
from typing import (
Any,
runtime_checkable,
Optional,
Protocol,
Type,
TypeVar,
Any, Tuple, Optional,
Type, Protocol, TypeVar
)
from tricycle import BufferedReceiveStream
import msgspec
import msgpack
import trio
from async_generator import asynccontextmanager
@ -49,7 +25,7 @@ _is_windows = platform.system() == 'Windows'
log = get_logger(__name__)
def get_stream_addrs(stream: trio.SocketStream) -> tuple:
def get_stream_addrs(stream: trio.SocketStream) -> Tuple:
# should both be IP sockets
lsockname = stream.socket.getsockname()
rsockname = stream.socket.getpeername()
@ -67,11 +43,9 @@ MsgType = TypeVar("MsgType")
# - https://jcristharif.com/msgspec/usage.html#structs
@runtime_checkable
class MsgTransport(Protocol[MsgType]):
stream: trio.SocketStream
drained: list[MsgType]
def __init__(self, stream: trio.SocketStream) -> None:
...
@ -89,33 +63,23 @@ class MsgTransport(Protocol[MsgType]):
def connected(self) -> bool:
...
# defining this sync otherwise it causes a mypy error because it
# can't figure out it's a generator i guess?..?
def drain(self) -> AsyncIterator[dict]:
@property
def laddr(self) -> Tuple[str, int]:
...
@property
def laddr(self) -> tuple[str, int]:
...
@property
def raddr(self) -> tuple[str, int]:
def raddr(self) -> Tuple[str, int]:
...
# TODO: not sure why we have to inherit here, but it seems to be an
# issue with ``get_msg_transport()`` returning a ``Type[Protocol]``;
# probably should make a `mypy` issue?
class MsgpackTCPStream(MsgTransport):
'''
A ``trio.SocketStream`` delivering ``msgpack`` formatted data
using the ``msgspec`` codec lib.
class MsgpackTCPStream:
'''A ``trio.SocketStream`` delivering ``msgpack`` formatted data
using ``msgpack-python``.
'''
def __init__(
self,
stream: trio.SocketStream,
prefix_size: int = 4,
) -> None:
@ -129,22 +93,103 @@ class MsgpackTCPStream(MsgTransport):
self._agen = self._iter_packets()
self._send_lock = trio.StrictFIFOLock()
# public i guess?
self.drained: list[dict] = []
async def _iter_packets(self) -> typing.AsyncGenerator[dict, None]:
"""Yield packets from the underlying stream.
"""
unpacker = msgpack.Unpacker(
raw=False,
use_list=False,
strict_map_key=False
)
while True:
try:
data = await self.stream.receive_some(2**10)
except trio.BrokenResourceError as err:
msg = err.args[0]
# XXX: handle connection-reset-by-peer the same as a EOF.
# we're currently remapping this since we allow
# a quick connect then drop for root actors when
# checking to see if there exists an "arbiter"
# on the chosen sockaddr (``_root.py:108`` or thereabouts)
if (
# nix
'[Errno 104]' in msg or
# on windows it seems there are a variety of errors
# to handle..
_is_windows
):
raise TransportClosed(
f'{self} was broken with {msg}'
)
else:
raise
log.transport(f"received {data}") # type: ignore
if data == b'':
raise TransportClosed(
f'transport {self} was already closed prior ro read'
)
unpacker.feed(data)
for packet in unpacker:
yield packet
@property
def laddr(self) -> Tuple[Any, ...]:
return self._laddr
@property
def raddr(self) -> Tuple[Any, ...]:
return self._raddr
async def send(self, msg: Any) -> None:
async with self._send_lock:
return await self.stream.send_all(
msgpack.dumps(msg, use_bin_type=True)
)
async def recv(self) -> Any:
return await self._agen.asend(None)
def __aiter__(self):
return self._agen
def connected(self) -> bool:
return self.stream.socket.fileno() != -1
class MsgspecTCPStream(MsgpackTCPStream):
'''A ``trio.SocketStream`` delivering ``msgpack`` formatted data
using ``msgspec``.
'''
def __init__(
self,
stream: trio.SocketStream,
prefix_size: int = 4,
) -> None:
import msgspec
super().__init__(stream)
self.recv_stream = BufferedReceiveStream(transport_stream=stream)
self.prefix_size = prefix_size
# TODO: struct aware messaging coders
self.encode = msgspec.msgpack.Encoder().encode
self.decode = msgspec.msgpack.Decoder().decode # dict[str, Any])
self.encode = msgspec.Encoder().encode
self.decode = msgspec.Decoder().decode # dict[str, Any])
async def _iter_packets(self) -> AsyncGenerator[dict, None]:
async def _iter_packets(self) -> typing.AsyncGenerator[dict, None]:
'''Yield packets from the underlying stream.
'''
import msgspec # noqa
decodes_failed: int = 0
last_decode_failed: bool = False
while True:
try:
@ -152,7 +197,6 @@ class MsgpackTCPStream(MsgTransport):
except (
ValueError,
ConnectionResetError,
# not sure entirely why we need this but without it we
# seem to be getting racy failures here on
@ -178,24 +222,15 @@ class MsgpackTCPStream(MsgTransport):
try:
yield self.decode(msg_bytes)
except (
msgspec.DecodeError,
msgspec.DecodingError,
UnicodeDecodeError,
):
if decodes_failed < 4:
if not last_decode_failed:
# ignore decoding errors for now and assume they have to
# do with a channel drop - hope that receiving from the
# channel will raise an expected error and bubble up.
try:
msg_str: str | bytes = msg_bytes.decode()
except UnicodeDecodeError:
msg_str = msg_bytes
log.error(
'`msgspec` failed to decode!?\n'
'dumping bytes:\n'
f'{msg_str!r}'
)
decodes_failed += 1
log.error('`msgspec` failed to decode!?')
last_decode_failed = True
else:
raise
@ -210,66 +245,31 @@ class MsgpackTCPStream(MsgTransport):
return await self.stream.send_all(size + bytes_data)
@property
def laddr(self) -> tuple[str, int]:
return self._laddr
@property
def raddr(self) -> tuple[str, int]:
return self._raddr
async def recv(self) -> Any:
return await self._agen.asend(None)
async def drain(self) -> AsyncIterator[dict]:
'''
Drain the stream's remaining messages sent from
the far end until the connection is closed by
the peer.
'''
try:
async for msg in self._iter_packets():
self.drained.append(msg)
except TransportClosed:
for msg in self.drained:
yield msg
def __aiter__(self):
return self._agen
def connected(self) -> bool:
return self.stream.socket.fileno() != -1
def get_msg_transport(
key: tuple[str, str],
key: Tuple[str, str],
) -> Type[MsgTransport]:
return {
('msgpack', 'tcp'): MsgpackTCPStream,
('msgspec', 'tcp'): MsgspecTCPStream,
}[key]
class Channel:
'''
An inter-process channel for communication between (remote) actors.
'''An inter-process channel for communication between (remote) actors.
Wraps a ``MsgStream``: transport + encoding IPC connection.
Currently we only support ``trio.SocketStream`` for transport
(aka TCP) and the ``msgpack`` interchange format via the ``msgspec``
codec libary.
Currently the only supported transport is a ``trio.SocketStream``.
'''
def __init__(
self,
destaddr: Optional[tuple[str, int]],
destaddr: Optional[Tuple[str, int]],
msg_transport_type_key: tuple[str, str] = ('msgpack', 'tcp'),
msg_transport_type_key: Tuple[str, str] = ('msgpack', 'tcp'),
# TODO: optional reconnection support?
# auto_reconnect: bool = False,
@ -280,6 +280,14 @@ class Channel:
# self._recon_seq = on_reconnect
# self._autorecon = auto_reconnect
# TODO: maybe expose this through the nursery api?
try:
# if installed load the msgspec transport since it's faster
import msgspec # noqa
msg_transport_type_key = ('msgspec', 'tcp')
except ImportError:
pass
self._destaddr = destaddr
self._transport_key = msg_transport_type_key
@ -289,14 +297,12 @@ class Channel:
self.msgstream: Optional[MsgTransport] = None
# set after handshake - always uid of far end
self.uid: Optional[tuple[str, str]] = None
self.uid: Optional[Tuple[str, str]] = None
# set if far end actor errors internally
self._exc: Optional[Exception] = None
self._agen = self._aiter_recv()
self._exc: Optional[Exception] = None # set if far end actor errors
self._closed: bool = False
# flag set on ``Portal.cancel_actor()`` indicating
# remote (peer) cancellation of the far end actor runtime.
self._cancel_called: bool = False # set on ``Portal.cancel_actor()``
@classmethod
def from_stream(
@ -317,7 +323,7 @@ class Channel:
def set_msg_transport(
self,
stream: trio.SocketStream,
type_key: Optional[tuple[str, str]] = None,
type_key: Optional[Tuple[str, str]] = None,
) -> MsgTransport:
type_key = type_key or self._transport_key
@ -332,16 +338,16 @@ class Channel:
return object.__repr__(self)
@property
def laddr(self) -> Optional[tuple[str, int]]:
def laddr(self) -> Optional[Tuple[str, int]]:
return self.msgstream.laddr if self.msgstream else None
@property
def raddr(self) -> Optional[tuple[str, int]]:
def raddr(self) -> Optional[Tuple[str, int]]:
return self.msgstream.raddr if self.msgstream else None
async def connect(
self,
destaddr: tuple[Any, ...] | None = None,
destaddr: Tuple[Any, ...] = None,
**kwargs
) -> MsgTransport:
@ -435,11 +441,9 @@ class Channel:
async def _aiter_recv(
self
) -> AsyncGenerator[Any, None]:
'''
Async iterate items from underlying stream.
'''
) -> typing.AsyncGenerator[Any, None]:
"""Async iterate items from underlying stream.
"""
assert self.msgstream
while True:
try:
@ -469,11 +473,9 @@ class Channel:
async def _connect_chan(
host: str, port: int
) -> typing.AsyncGenerator[Channel, None]:
'''
Create and connect a channel with disconnect on context manager
"""Create and connect a channel with disconnect on context manager
teardown.
'''
"""
chan = Channel((host, port))
await chan.connect()
yield chan

View File

@ -1,39 +1,23 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Helpers pulled mostly verbatim from ``multiprocessing.spawn``
to aid with "fixing up" the ``__main__`` module in subprocesses.
These helpers are needed for any spawing backend that doesn't already
handle this. For example when using ``trio_run_in_process`` it is needed
but obviously not when we're already using ``multiprocessing``.
These helpers are needed for any spawing backend that doesn't already handle this.
For example when using ``trio_run_in_process`` it is needed but obviously not when
we're already using ``multiprocessing``.
"""
import os
import sys
import platform
import types
import runpy
from typing import Dict
ORIGINAL_DIR = os.path.abspath(os.getcwd())
def _mp_figure_out_main() -> dict[str, str]:
def _mp_figure_out_main() -> Dict[str, str]:
"""Taken from ``multiprocessing.spawn.get_preparation_data()``.
Retrieve parent actor `__main__` module data.

View File

@ -1,80 +1,61 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
"""
Portal api
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Memory boundary "Portals": an API for structured
concurrency linked tasks running in disparate memory domains.
'''
from __future__ import annotations
"""
import importlib
import inspect
from typing import (
Any, Optional,
Callable, AsyncGenerator,
Type,
Tuple, Any, Dict, Optional, Set,
Callable, AsyncGenerator
)
from functools import partial
from dataclasses import dataclass
from pprint import pformat
import warnings
import trio
from async_generator import asynccontextmanager
from .trionics import maybe_open_nursery
from ._state import current_actor
from ._ipc import Channel
from .log import get_logger
from .msg import NamespacePath
from ._exceptions import (
unpack_error,
NoResult,
RemoteActorError,
ContextCancelled,
)
from ._streaming import (
Context,
MsgStream,
)
from ._streaming import Context, ReceiveMsgStream
log = get_logger(__name__)
def _unwrap_msg(
msg: dict[str, Any],
channel: Channel
@asynccontextmanager
async def maybe_open_nursery(
nursery: trio.Nursery = None,
shield: bool = False,
) -> AsyncGenerator[trio.Nursery, Any]:
"""Create a new nursery if None provided.
) -> Any:
__tracebackhide__ = True
try:
return msg['return']
except KeyError:
# internal error should never get here
assert msg.get('cid'), "Received internal error at portal?"
raise unpack_error(msg, channel) from None
Blocks on exit as expected if no input nursery is provided.
"""
if nursery is not None:
yield nursery
else:
async with trio.open_nursery() as nursery:
nursery.cancel_scope.shield = shield
yield nursery
class MessagingError(Exception):
'Some kind of unexpected SC messaging dialog issue'
def func_deats(func: Callable) -> Tuple[str, str]:
return (
func.__module__,
func.__name__,
)
class Portal:
'''
A 'portal' to a(n) (remote) ``Actor``.
"""A 'portal' to a(n) (remote) ``Actor``.
A portal is "opened" (and eventually closed) by one side of an
inter-actor communication context. The side which opens the portal
@ -90,55 +71,89 @@ class Portal:
function calling semantics are supported transparently; hence it is
like having a "portal" between the seperate actor memory spaces.
'''
# the timeout for a remote cancel request sent to
# a(n) (peer) actor.
cancel_timeout = 0.5
"""
def __init__(self, channel: Channel) -> None:
self.channel = channel
# when this is set to a tuple returned from ``_submit()`` then
# it is expected that ``result()`` will be awaited at some point
# during the portal's lifetime
self._result_msg: Optional[dict] = None
# When set to a ``Context`` (when _submit_for_result is called)
# it is expected that ``result()`` will be awaited at some
# point.
self._expect_result: Optional[Context] = None
self._streams: set[MsgStream] = set()
self._result: Optional[Any] = None
# set when _submit_for_result is called
self._expect_result: Optional[
Tuple[str, Any, str, Dict[str, Any]]
] = None
self._streams: Set[ReceiveMsgStream] = set()
self.actor = current_actor()
self._cancel_called: bool = False
async def _submit_for_result(
@property
def cancel_called(self) -> bool:
'''
Same principle as ``trio.CancelScope.cancel_called``.
'''
return self._cancel_called
async def _submit(
self,
ns: str,
func: str,
**kwargs
) -> None:
kwargs,
) -> Tuple[str, trio.MemoryReceiveChannel, str, Dict[str, Any]]:
"""Submit a function to be scheduled and run by actor, return the
associated caller id, response queue, response type str,
first message packet as a tuple.
This is an async call.
"""
# ship a function call request to the remote actor
cid, recv_chan = await self.actor.send_cmd(
self.channel, ns, func, kwargs)
# wait on first response msg and handle (this should be
# in an immediate response)
first_msg = await recv_chan.receive()
functype = first_msg.get('functype')
if 'error' in first_msg:
raise unpack_error(first_msg, self.channel)
elif functype not in ('asyncfunc', 'asyncgen', 'context'):
raise ValueError(f"{first_msg} is an invalid response packet?")
return cid, recv_chan, functype, first_msg
async def _submit_for_result(self, ns: str, func: str, **kwargs) -> None:
assert self._expect_result is None, \
"A pending main result has already been submitted"
self._expect_result = await self.actor.start_remote_task(
self.channel,
ns,
func,
kwargs
)
self._expect_result = await self._submit(ns, func, kwargs)
async def _return_once(
self,
ctx: Context,
cid: str,
recv_chan: trio.abc.ReceiveChannel,
resptype: str,
first_msg: dict
) -> Any:
# __tracebackhide__ = True
assert resptype == 'asyncfunc' # single response
) -> dict[str, Any]:
assert ctx._remote_func_type == 'asyncfunc' # single response
msg = await ctx._recv_chan.receive()
return msg
msg = await recv_chan.receive()
try:
return msg['return']
except KeyError:
# internal error should never get here
assert msg.get('cid'), "Received internal error at portal?"
raise unpack_error(msg, self.channel)
async def result(self) -> Any:
'''
"""
Return the result(s) from the remote actor's "main" task.
'''
"""
# __tracebackhide__ = True
# Check for non-rpc errors slapped on the
# channel for which we always raise
@ -156,13 +171,17 @@ class Portal:
# expecting a "main" result
assert self._expect_result
if self._result is None:
try:
self._result = await self._return_once(*self._expect_result)
except RemoteActorError as err:
self._result = err
if self._result_msg is None:
self._result_msg = await self._return_once(
self._expect_result
)
# re-raise error on every call
if isinstance(self._result, RemoteActorError):
raise self._result
return _unwrap_msg(self._result_msg, self.channel)
return self._result
async def _cancel_streams(self):
# terminate all locally running async generator
@ -187,47 +206,43 @@ class Portal:
# we'll need to .aclose all those channels here
await self._cancel_streams()
async def cancel_actor(
self,
timeout: float | None = None,
) -> bool:
async def cancel_actor(self) -> None:
'''
Cancel the actor on the other end of this portal.
That means cancelling the "actor runtime" not just any one
task that's running there.
'''
self._cancel_called = True
if not self.channel.connected():
log.cancel("This channel is already closed can't cancel")
log.cancel("This portal is already closed can't cancel")
return False
await self._cancel_streams()
log.cancel(
f"Sending actor cancel request to {self.channel.uid} on "
f"{self.channel}")
self.channel._cancel_called = True
f"Sending runtime cancel msg to {self.channel.uid} @ "
f"{self.channel.raddr}")
try:
# send cancel cmd - might not get response
# XXX: sure would be nice to make this work with a proper shield
with trio.move_on_after(timeout or self.cancel_timeout) as cs:
cs.shield = True
with trio.move_on_after(0.5) as cancel_scope:
cancel_scope.shield = True
await self.run_from_ns('self', 'cancel')
return True
if cs.cancelled_caught:
if cancel_scope.cancelled_caught:
log.cancel(f"May have failed to cancel {self.channel.uid}")
# if we get here some weird cancellation case happened
return False
except (
trio.ClosedResourceError,
trio.BrokenResourceError,
):
except trio.ClosedResourceError:
log.cancel(
f"{self.channel} for {self.channel.uid} was already "
"closed or broken?")
f"{self.channel} for {self.channel.uid} was already closed?")
return False
async def run_from_ns(
@ -236,9 +251,7 @@ class Portal:
function_name: str,
**kwargs,
) -> Any:
'''
Run a function from a (remote) namespace in a new task on the
far-end actor.
"""Run a function from a (remote) namespace in a new task on the far-end actor.
This is a more explitcit way to run tasks in a remote-process
actor using explicit object-path syntax. Hint: this is how
@ -247,20 +260,12 @@ class Portal:
Note::
A special namespace `self` can be used to invoke `Actor`
instance methods in the remote runtime. Currently this
should only be used solely for ``tractor`` runtime
internals.
'''
ctx = await self.actor.start_remote_task(
self.channel,
namespace_path,
function_name,
kwargs,
instance methods in the remote runtime. Currently this should only
be used for `tractor` internals.
"""
return await self._return_once(
*(await self._submit(namespace_path, function_name, kwargs))
)
ctx._portal = self
msg = await self._return_once(ctx)
return _unwrap_msg(msg, self.channel)
async def run(
self,
@ -268,14 +273,12 @@ class Portal:
fn_name: Optional[str] = None,
**kwargs
) -> Any:
'''
Submit a remote function to be scheduled and run by actor, in
"""Submit a remote function to be scheduled and run by actor, in
a new task, wrap and return its (stream of) result(s).
This is a blocking call and returns either a value from the
remote rpc task or a local async generator instance.
'''
"""
if isinstance(func, str):
warnings.warn(
"`Portal.run(namespace: str, funcname: str)` is now"
@ -299,18 +302,10 @@ class Portal:
raise TypeError(
f'{func} must be a non-streaming async function!')
fn_mod_path, fn_name = NamespacePath.from_ref(func).to_tuple()
fn_mod_path, fn_name = func_deats(func)
ctx = await self.actor.start_remote_task(
self.channel,
fn_mod_path,
fn_name,
kwargs,
)
ctx._portal = self
return _unwrap_msg(
await self._return_once(ctx),
self.channel,
return await self._return_once(
*(await self._submit(fn_mod_path, fn_name, kwargs))
)
@asynccontextmanager
@ -319,7 +314,7 @@ class Portal:
async_gen_func: Callable, # typing: ignore
**kwargs,
) -> AsyncGenerator[MsgStream, None]:
) -> AsyncGenerator[ReceiveMsgStream, None]:
if not inspect.isasyncgenfunction(async_gen_func):
if not (
@ -329,23 +324,28 @@ class Portal:
raise TypeError(
f'{async_gen_func} must be an async generator function!')
fn_mod_path, fn_name = NamespacePath.from_ref(
async_gen_func).to_tuple()
ctx = await self.actor.start_remote_task(
fn_mod_path, fn_name = func_deats(async_gen_func)
(
cid,
recv_chan,
functype,
first_msg
) = await self._submit(fn_mod_path, fn_name, kwargs)
# receive only stream
assert functype == 'asyncgen'
ctx = Context(
self.channel,
fn_mod_path,
fn_name,
kwargs
cid,
# do we need this to be closed implicitly?
# _recv_chan=recv_chan,
_portal=self
)
ctx._portal = self
# ensure receive-only stream entrypoint
assert ctx._remote_func_type == 'asyncgen'
try:
# deliver receive only stream
async with MsgStream(
ctx, ctx._recv_chan,
async with ReceiveMsgStream(
ctx, recv_chan,
) as rchan:
self._streams.add(rchan)
yield rchan
@ -379,9 +379,8 @@ class Portal:
func: Callable,
**kwargs,
) -> AsyncGenerator[tuple[Context, Any], None]:
'''
Open an inter-actor task context.
) -> AsyncGenerator[Tuple[Context, Any], None]:
'''Open an inter-actor task context.
This is a synchronous API which allows for deterministic
setup/teardown of a remote task. The yielded ``Context`` further
@ -389,6 +388,7 @@ class Portal:
and synchronized final result collection. See ``tractor.Context``.
'''
# conduct target func method structural checks
if not inspect.iscoroutinefunction(func) and (
getattr(func, '_tractor_contex_function', False)
@ -396,49 +396,44 @@ class Portal:
raise TypeError(
f'{func} must be an async generator function!')
fn_mod_path, fn_name = NamespacePath.from_ref(func).to_tuple()
fn_mod_path, fn_name = func_deats(func)
ctx = await self.actor.start_remote_task(
self.channel,
fn_mod_path,
fn_name,
kwargs
)
recv_chan: Optional[trio.MemoryReceiveChannel] = None
assert ctx._remote_func_type == 'context'
msg = await ctx._recv_chan.receive()
cid, recv_chan, functype, first_msg = await self._submit(
fn_mod_path, fn_name, kwargs)
assert functype == 'context'
msg = await recv_chan.receive()
try:
# the "first" value here is delivered by the callee's
# ``Context.started()`` call.
first = msg['started']
ctx._started_called = True
except KeyError:
assert msg.get('cid'), ("Received internal error at context?")
if msg.get('error'):
# raise kerr from unpack_error(msg, self.channel)
raise unpack_error(msg, self.channel) from None
# raise the error message
raise unpack_error(msg, self.channel)
else:
raise MessagingError(
f'Context for {ctx.cid} was expecting a `started` message'
f' but received a non-error msg:\n{pformat(msg)}'
)
raise
_err: Optional[BaseException] = None
ctx._portal = self
uid = self.channel.uid
cid = ctx.cid
etype: Optional[Type[BaseException]] = None
# deliver context instance and .started() msg value in open tuple.
try:
async with trio.open_nursery() as scope_nursery:
ctx._scope_nursery = scope_nursery
ctx = Context(
self.channel,
cid,
_portal=self,
_recv_chan=recv_chan,
_scope_nursery=scope_nursery,
)
# do we need this?
# pairs with handling in ``Actor._push_result()``
# recv_chan._ctx = ctx
# await trio.lowlevel.checkpoint()
yield ctx, first
@ -460,31 +455,19 @@ class Portal:
except (
BaseException,
# more specifically, we need to handle these but not
# sure it's worth being pedantic:
# more specifically, we need to handle:
# Exception,
# trio.Cancelled,
# trio.MultiError,
# KeyboardInterrupt,
) as err:
etype = type(err)
_err = err
# the context cancels itself on any cancel
# causing error.
if ctx.chan.connected():
log.cancel(
'Context cancelled for task, sending cancel request..\n'
f'task:{cid}\n'
f'actor:{uid}'
)
log.cancel(f'Context {ctx} sending cancel to far end')
with trio.CancelScope(shield=True):
await ctx.cancel()
else:
log.warning(
'IPC connection for context is broken?\n'
f'task:{cid}\n'
f'actor:{uid}'
)
raise
finally:
@ -493,74 +476,46 @@ class Portal:
# sure we get the error the underlying feeder mem chan.
# if it's not raised here it *should* be raised from the
# msg loop nursery right?
if ctx.chan.connected():
log.info(
'Waiting on final context-task result for\n'
f'task: {cid}\n'
f'actor: {uid}'
)
result = await ctx.result()
log.runtime(
f'Context {fn_name} returned '
f'value from callee `{result}`'
)
# though it should be impossible for any tasks
# operating *in* this scope to have survived
# we tear down the runtime feeder chan last
# to avoid premature stream clobbers.
if ctx._recv_chan is not None:
# should we encapsulate this in the context api?
await ctx._recv_chan.aclose()
if recv_chan is not None:
await recv_chan.aclose()
if etype:
if _err:
if ctx._cancel_called:
log.cancel(
f'Context {fn_name} cancelled by caller with\n{etype}'
f'Context {fn_name} cancelled by caller with\n{_err}'
)
elif _err is not None:
log.cancel(
f'Context for task cancelled by callee with {etype}\n'
f'target: `{fn_name}`\n'
f'task:{cid}\n'
f'actor:{uid}'
f'Context {fn_name} cancelled by callee with\n{_err}'
)
# XXX: (MEGA IMPORTANT) if this is a root opened process we
# wait for any immediate child in debug before popping the
# context from the runtime msg loop otherwise inside
# ``Actor._push_result()`` the msg will be discarded and in
# the case where that msg is global debugger unlock (via
# a "stop" msg for a stream), this can result in a deadlock
# where the root is waiting on the lock to clear but the
# child has already cleared it and clobbered IPC.
from ._debug import maybe_wait_for_debugger
await maybe_wait_for_debugger()
# remove the context from runtime tracking
self.actor._contexts.pop(
(self.channel.uid, ctx.cid),
None,
else:
log.runtime(
f'Context {fn_name} returned '
f'value from callee `{result}`'
)
@dataclass
class LocalPortal:
'''
A 'portal' to a local ``Actor``.
"""A 'portal' to a local ``Actor``.
A compatibility shim for normal portals but for invoking functions
using an in process actor instance.
'''
"""
actor: 'Actor' # type: ignore # noqa
channel: Channel
async def run_from_ns(self, ns: str, func_name: str, **kwargs) -> Any:
'''
Run a requested local function from a namespace path and
"""Run a requested local function from a namespace path and
return it's result.
'''
"""
obj = self.actor if ns == 'self' else importlib.import_module(ns)
func = getattr(obj, func_name)
return await func(**kwargs)
@ -575,13 +530,10 @@ async def open_portal(
shield: bool = False,
) -> AsyncGenerator[Portal, None]:
'''
Open a ``Portal`` through the provided ``channel``.
"""Open a ``Portal`` through the provided ``channel``.
Spawns a background task to handle message processing (normally
done by the actor-runtime implicitly).
'''
Spawns a background task to handle message processing.
"""
actor = current_actor()
assert actor
was_connected = False
@ -597,11 +549,9 @@ async def open_portal(
msg_loop_cs: Optional[trio.CancelScope] = None
if start_msg_loop:
from ._runtime import process_messages
msg_loop_cs = await nursery.start(
partial(
process_messages,
actor,
actor._process_messages,
channel,
# if the local task is cancelled we want to keep
# the msg loop running until our block ends
@ -611,6 +561,7 @@ async def open_portal(
portal = Portal(channel)
try:
yield portal
finally:
await portal.aclose()

View File

@ -1,42 +1,17 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
"""
Root actor runtime ignition(s).
'''
"""
from contextlib import asynccontextmanager
from functools import partial
import importlib
import logging
import signal
import sys
import os
from typing import Tuple, Optional, List, Any
import typing
import warnings
from exceptiongroup import BaseExceptionGroup
import trio
from ._runtime import (
Actor,
Arbiter,
async_main,
)
from ._actor import Actor, Arbiter
from . import _debug
from . import _spawn
from . import _state
@ -56,45 +31,37 @@ logger = log.get_logger('tractor')
@asynccontextmanager
async def open_root_actor(
*,
# defaults are above
arbiter_addr: tuple[str, int] | None = None,
arbiter_addr: Optional[Tuple[str, int]] = (
_default_arbiter_host,
_default_arbiter_port,
),
# defaults are above
registry_addr: tuple[str, int] | None = None,
name: str | None = 'root',
name: Optional[str] = 'root',
# either the `multiprocessing` start method:
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# OR `trio` (the new default).
start_method: _spawn.SpawnMethodKey | None = None,
start_method: Optional[str] = None,
# enables the multi-process debugger support
debug_mode: bool = False,
# internal logging
loglevel: str | None = None,
loglevel: Optional[str] = None,
enable_modules: list | None = None,
rpc_module_paths: list | None = None,
enable_modules: Optional[List] = None,
rpc_module_paths: Optional[List] = None,
) -> typing.Any:
'''
Runtime init entry point for ``tractor``.
"""Async entry point for ``tractor``.
'''
"""
# Override the global debugger hook to make it play nice with
# ``trio``, see much discussion in:
# ``trio``, see:
# https://github.com/python-trio/trio/issues/1155#issuecomment-742964018
builtin_bp_handler = sys.breakpointhook
orig_bp_path: str | None = os.environ.get('PYTHONBREAKPOINT', None)
os.environ['PYTHONBREAKPOINT'] = 'tractor._debug._set_trace'
# attempt to retreive ``trio``'s sigint handler and stash it
# on our debugger lock state.
_debug.Lock._trio_handler = signal.getsignal(signal.SIGINT)
# mark top most level process as root actor
_state._runtime_vars['_is_root'] = True
@ -113,25 +80,6 @@ async def open_root_actor(
if start_method is not None:
_spawn.try_set_start_method(start_method)
if arbiter_addr is not None:
warnings.warn(
'`arbiter_addr` is now deprecated and has been renamed to'
'`registry_addr`.\nUse that instead..',
DeprecationWarning,
stacklevel=2,
)
registry_addr = (host, port) = (
registry_addr
or arbiter_addr
or (
_default_arbiter_host,
_default_arbiter_port,
)
)
loglevel = (loglevel or log._default_loglevel).upper()
if debug_mode and _spawn._spawn_method == 'trio':
_state._runtime_vars['_debug_mode'] = True
@ -139,41 +87,38 @@ async def open_root_actor(
# for use of ``await tractor.breakpoint()``
enable_modules.append('tractor._debug')
# if debug mode get's enabled *at least* use that level of
# logging for some informative console prompts.
if (
logging.getLevelName(
# lul, need the upper case for the -> int map?
# sweet "dynamic function behaviour" stdlib...
loglevel,
) > logging.getLevelName('PDB')
):
loglevel = 'PDB'
if loglevel is None:
loglevel = 'pdb'
elif debug_mode:
raise RuntimeError(
"Debug mode is only supported for the `trio` backend!"
)
arbiter_addr = (host, port) = arbiter_addr or (
_default_arbiter_host,
_default_arbiter_port,
)
loglevel = loglevel or log.get_loglevel()
if loglevel is not None:
log._default_loglevel = loglevel
log.get_console_log(loglevel)
try:
# make a temporary connection to see if an arbiter exists,
# if one can't be made quickly we assume none exists.
# make a temporary connection to see if an arbiter exists
arbiter_found = False
try:
# TODO: this connect-and-bail forces us to have to carefully
# rewrap TCP 104-connection-reset errors as EOF so as to avoid
# propagating cancel-causing errors to the channel-msg loop
# machinery. Likely it would be better to eventually have
# a "discovery" protocol with basic handshake instead.
with trio.move_on_after(1):
async with _connect_chan(host, port):
arbiter_found = True
except OSError:
# TODO: make this a "discovery" log level?
logger.warning(f"No actor registry found @ {host}:{port}")
logger.warning(f"No actor could be found @ {host}:{port}")
# create a local actor and start up its main routine/task
if arbiter_found:
@ -183,7 +128,7 @@ async def open_root_actor(
actor = Actor(
name or 'anonymous',
arbiter_addr=registry_addr,
arbiter_addr=arbiter_addr,
loglevel=loglevel,
enable_modules=enable_modules,
)
@ -199,7 +144,7 @@ async def open_root_actor(
actor = Arbiter(
name or 'arbiter',
arbiter_addr=registry_addr,
arbiter_addr=arbiter_addr,
loglevel=loglevel,
enable_modules=enable_modules,
)
@ -215,14 +160,13 @@ async def open_root_actor(
# start the actor runtime in a new task
async with trio.open_nursery() as nursery:
# ``_runtime.async_main()`` creates an internal nursery and
# ``Actor._async_main()`` creates an internal nursery and
# thus blocks here until the entire underlying actor tree has
# terminated thereby conducting structured concurrency.
await nursery.start(
partial(
async_main,
actor,
actor._async_main,
accept_addr=(host, port),
parent_addr=None
)
@ -230,10 +174,7 @@ async def open_root_actor(
try:
yield actor
except (
Exception,
BaseExceptionGroup,
) as err:
except (Exception, trio.MultiError) as err:
entered = await _debug._maybe_enter_pm(err)
@ -244,69 +185,71 @@ async def open_root_actor(
raise
finally:
# NOTE: not sure if we'll ever need this but it's
# possibly better for even more determinism?
# logger.cancel(
# f'Waiting on {len(nurseries)} nurseries in root..')
# nurseries = actor._actoruid2nursery.values()
# async with trio.open_nursery() as tempn:
# for an in nurseries:
# tempn.start_soon(an.exited.wait)
logger.cancel("Shutting down root actor")
await actor.cancel()
finally:
_state._current_actor = None
# restore breakpoint hook state
sys.breakpointhook = builtin_bp_handler
if orig_bp_path is not None:
os.environ['PYTHONBREAKPOINT'] = orig_bp_path
else:
# clear env back to having no entry
os.environ.pop('PYTHONBREAKPOINT')
logger.runtime("Root actor terminated")
def run_daemon(
enable_modules: list[str],
def run(
# target
async_fn: typing.Callable[..., typing.Awaitable],
*args,
# runtime kwargs
name: str | None = 'root',
registry_addr: tuple[str, int] = (
name: Optional[str] = 'root',
arbiter_addr: Tuple[str, int] = (
_default_arbiter_host,
_default_arbiter_port,
),
start_method: str | None = None,
start_method: Optional[str] = None,
debug_mode: bool = False,
**kwargs
**kwargs,
) -> None:
'''
Spawn daemon actor which will respond to RPC; the main task simply
starts the runtime and then sleeps forever.
This is a very minimal convenience wrapper around starting
a "run-until-cancelled" root actor which can be started with a set
of enabled modules for RPC request handling.
'''
kwargs['enable_modules'] = list(enable_modules)
for path in enable_modules:
importlib.import_module(path)
) -> Any:
"""Run a trio-actor async function in process.
This is tractor's main entry and the start point for any async actor.
"""
async def _main():
async with open_root_actor(
registry_addr=registry_addr,
arbiter_addr=arbiter_addr,
name=name,
start_method=start_method,
debug_mode=debug_mode,
**kwargs,
):
return await trio.sleep_forever()
return await async_fn(*args)
warnings.warn(
"`tractor.run()` is now deprecated. `tractor` now"
" implicitly starts the root actor on first actor nursery"
" use. If you want to start the root actor manually, use"
" `tractor.open_root_actor()`.",
DeprecationWarning,
stacklevel=2,
)
return trio.run(_main)
def run_daemon(
enable_modules: List[str],
**kwargs
) -> None:
"""Spawn daemon actor which will respond to RPC.
This is a convenience wrapper around
``tractor.run(trio.sleep(float('inf')))`` such that the first actor spawned
is meant to run forever responding to RPC requests.
"""
kwargs['enable_modules'] = list(enable_modules)
for path in enable_modules:
importlib.import_module(path)
return run(partial(trio.sleep, float('inf')), **kwargs)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,27 +1,9 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Per process state
"""
from typing import (
Optional,
Any,
)
from typing import Optional, Dict, Any
from collections.abc import Mapping
import multiprocessing as mp
import trio
@ -29,7 +11,7 @@ from ._exceptions import NoRuntime
_current_actor: Optional['Actor'] = None # type: ignore # noqa
_runtime_vars: dict[str, Any] = {
_runtime_vars: Dict[str, Any] = {
'_debug_mode': False,
'_is_root': False,
'_root_mailbox': (None, None)
@ -45,10 +27,33 @@ def current_actor(err_on_no_runtime: bool = True) -> 'Actor': # type: ignore #
return _current_actor
_conc_name_getters = {
'task': trio.lowlevel.current_task,
'actor': current_actor
}
class ActorContextInfo(Mapping):
"Dyanmic lookup for local actor and task names"
_context_keys = ('task', 'actor')
def __len__(self):
return len(self._context_keys)
def __iter__(self):
return iter(self._context_keys)
def __getitem__(self, key: str) -> str:
try:
return _conc_name_getters[key]().name # type: ignore
except RuntimeError:
# no local actor/task context initialized yet
return f'no {key} context'
def is_main_process() -> bool:
"""Bool determining if this actor is running in the top-most process.
"""
import multiprocessing as mp
return mp.current_process().name == 'MainProcess'

View File

@ -1,19 +1,3 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Message stream types and APIs.
@ -23,10 +7,8 @@ import inspect
from contextlib import asynccontextmanager
from dataclasses import dataclass
from typing import (
Any,
Optional,
Callable,
AsyncGenerator,
Any, Optional, Callable,
AsyncGenerator, Dict,
AsyncIterator
)
@ -44,19 +26,16 @@ from .trionics import broadcast_receiver, BroadcastReceiver
log = get_logger(__name__)
# TODO: the list
# - generic typing like trio's receive channel but with msgspec
# messages? class ReceiveChannel(AsyncResource, Generic[ReceiveType]):
# - use __slots__ on ``Context``?
# TODO: generic typing like trio's receive channel
# but with msgspec messages?
# class ReceiveChannel(AsyncResource, Generic[ReceiveType]):
class MsgStream(trio.abc.Channel):
'''
A bidirectional message stream for receiving logically sequenced
values over an inter-actor IPC ``Channel``.
This is the type returned to a local task which entered either
``Portal.open_stream_from()`` or ``Context.open_stream()``.
class ReceiveMsgStream(trio.abc.ReceiveChannel):
'''A IPC message stream for receiving logically sequenced values
over an inter-actor ``Channel``. This is the type returned to
a local task which entered either ``Portal.open_stream_from()`` or
``Context.open_stream()``.
Termination rules:
@ -81,7 +60,6 @@ class MsgStream(trio.abc.Channel):
# flag to denote end of stream
self._eoc: bool = False
self._closed: bool = False
# delegate directly to underlying mem channel
def receive_nowait(self):
@ -98,14 +76,11 @@ class MsgStream(trio.abc.Channel):
if self._eoc:
raise trio.EndOfChannel
if self._closed:
raise trio.ClosedResourceError('This stream was closed')
try:
msg = await self._rx_chan.receive()
return msg['yield']
except KeyError as err:
except KeyError:
# internal error should never get here
assert msg.get('cid'), ("Received internal error at portal?")
@ -114,18 +89,9 @@ class MsgStream(trio.abc.Channel):
# - 'error'
# possibly just handle msg['stop'] here!
if self._closed:
raise trio.ClosedResourceError('This stream was closed')
if msg.get('stop') or self._eoc:
if msg.get('stop'):
log.debug(f"{self} was stopped at remote end")
# XXX: important to set so that a new ``.receive()``
# call (likely by another task using a broadcast receiver)
# doesn't accidentally pull the ``return`` message
# value out of the underlying feed mem chan!
self._eoc = True
# # when the send is closed we assume the stream has
# # terminated and signal this local iterator to stop
# await self.aclose()
@ -133,7 +99,7 @@ class MsgStream(trio.abc.Channel):
# XXX: this causes ``ReceiveChannel.__anext__()`` to
# raise a ``StopAsyncIteration`` **and** in our catch
# block below it will trigger ``.aclose()``.
raise trio.EndOfChannel from err
raise trio.EndOfChannel
# TODO: test that shows stream raising an expected error!!!
elif msg.get('error'):
@ -178,11 +144,10 @@ class MsgStream(trio.abc.Channel):
raise # propagate
async def aclose(self):
'''
Cancel associated remote actor task and local memory channel on
close.
"""Cancel associated remote actor task and local memory channel
on close.
'''
"""
# XXX: keep proper adherance to trio's `.aclose()` semantics:
# https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.AsyncResource.aclose
rx_chan = self._rx_chan
@ -212,15 +177,18 @@ class MsgStream(trio.abc.Channel):
# In the bidirectional case, `Context.open_stream()` will create
# the `Actor._cids2qs` entry from a call to
# `Actor.get_context()` and will call us here to send the stop
# msg in ``__aexit__()`` on teardown.
# `Actor.get_memchans()` and will send the stop message in
# ``__aexit__()`` on teardown so it **does not** need to be
# called here.
if not self._ctx._portal:
# Only for 2 way streams can we can send stop from the
# caller side.
try:
# NOTE: if this call is cancelled we expect this end to
# handle as though the stop was never sent (though if it
# was it shouldn't matter since it's unlikely a user
# will try to re-use a stream after attemping to close
# it).
with trio.CancelScope(shield=True):
await self._ctx.send_stop()
except (
@ -230,14 +198,7 @@ class MsgStream(trio.abc.Channel):
# the underlying channel may already have been pulled
# in which case our stop message is meaningless since
# it can't traverse the transport.
ctx = self._ctx
log.warning(
f'Stream was already destroyed?\n'
f'actor: {ctx.chan.uid}\n'
f'ctx id: {ctx.cid}'
)
self._closed = True
log.debug(f'Channel for {self} was already closed')
# Do we close the local mem chan ``self._rx_chan`` ??!?
@ -280,8 +241,7 @@ class MsgStream(trio.abc.Channel):
self,
) -> AsyncIterator[BroadcastReceiver]:
'''
Allocate and return a ``BroadcastReceiver`` which delegates
'''Allocate and return a ``BroadcastReceiver`` which delegates
to this message stream.
This allows multiple local tasks to receive each their own copy
@ -318,80 +278,55 @@ class MsgStream(trio.abc.Channel):
async with self._broadcaster.subscribe() as bstream:
assert bstream.key != self._broadcaster.key
assert bstream._recv == self._broadcaster._recv
# NOTE: we patch on a `.send()` to the bcaster so that the
# caller can still conduct 2-way streaming using this
# ``bstream`` handle transparently as though it was the msg
# stream instance.
bstream.send = self.send # type: ignore
yield bstream
class MsgStream(ReceiveMsgStream, trio.abc.Channel):
"""
Bidirectional message stream for use within an inter-actor actor
``Context```.
"""
async def send(
self,
data: Any
) -> None:
'''
Send a message over this stream to the far end.
'''Send a message over this stream to the far end.
'''
if self._ctx._error:
raise self._ctx._error # from None
if self._closed:
raise trio.ClosedResourceError('This stream was already closed')
# if self._eoc:
# raise trio.ClosedResourceError('This stream is already ded')
await self._ctx.chan.send({'yield': data, 'cid': self._ctx.cid})
@dataclass
class Context:
'''
An inter-actor, ``trio`` task communication context.
NB: This class should never be instatiated directly, it is delivered
by either runtime machinery to a remotely started task or by entering
``Portal.open_context()``.
'''An inter-actor task communication context.
Allows maintaining task or protocol specific state between
2 communicating actor tasks. A unique context is created on the
callee side/end for every request to a remote actor from a portal.
A context can be cancelled and (possibly eventually restarted) from
either side of the underlying IPC channel, open task oriented
message streams and acts as an IPC aware inter-actor-task cancel
scope.
either side of the underlying IPC channel.
A context can be used to open task oriented message streams and can
be thought of as an IPC aware inter-actor cancel scope.
'''
chan: Channel
cid: str
# these are the "feeder" channels for delivering
# message values to the local task from the runtime
# msg processing loop.
_recv_chan: trio.MemoryReceiveChannel
_send_chan: trio.MemorySendChannel
_remote_func_type: Optional[str] = None
# only set on the caller side
_portal: Optional['Portal'] = None # type: ignore # noqa
_recv_chan: Optional[trio.MemoryReceiveChannel] = None
_result: Optional[Any] = False
_error: Optional[BaseException] = None
# status flags
_cancel_called: bool = False
_cancel_msg: Optional[str] = None
_enter_debugger_on_cancel: bool = True
_started_called: bool = False
_started_received: bool = False
_stream_opened: bool = False
# only set on the callee side
_scope_nursery: Optional[trio.Nursery] = None
_backpressure: bool = False
async def send_yield(self, data: Any) -> None:
warnings.warn(
@ -405,80 +340,32 @@ class Context:
async def send_stop(self) -> None:
await self.chan.send({'stop': True, 'cid': self.cid})
async def _maybe_raise_from_remote_msg(
def _error_from_remote_msg(
self,
msg: dict[str, Any],
msg: Dict[str, Any],
) -> None:
'''
(Maybe) unpack and raise a msg error into the local scope
'''Unpack and raise a msg error into the local scope
nursery for this context.
Acts as a form of "relay" for a remote error raised
in the corresponding remote callee task.
'''
error = msg.get('error')
if error:
# If this is an error message from a context opened by
# ``Portal.open_context()`` we want to interrupt any ongoing
# (child) tasks within that context to be notified of the remote
# error relayed here.
#
# The reason we may want to raise the remote error immediately
# is that there is no guarantee the associated local task(s)
# will attempt to read from any locally opened stream any time
# soon.
#
# NOTE: this only applies when
# ``Portal.open_context()`` has been called since it is assumed
# (currently) that other portal APIs (``Portal.run()``,
# ``.run_in_actor()``) do their own error checking at the point
# of the call and result processing.
log.error(
f'Remote context error for {self.chan.uid}:{self.cid}:\n'
f'{msg["error"]["tb_str"]}'
)
error = unpack_error(msg, self.chan)
if (
isinstance(error, ContextCancelled) and
self._cancel_called
):
# this is an expected cancel request response message
# and we don't need to raise it in scope since it will
# potentially override a real error
return
self._error = error
# TODO: tempted to **not** do this by-reraising in a
# nursery and instead cancel a surrounding scope, detect
# the cancellation, then lookup the error that was set?
if self._scope_nursery:
assert self._scope_nursery
async def raiser():
raise self._error from None
raise unpack_error(msg, self.chan)
# from trio.testing import wait_all_tasks_blocked
# await wait_all_tasks_blocked()
if not self._scope_nursery._closed: # type: ignore
self._scope_nursery.start_soon(raiser)
async def cancel(
self,
msg: Optional[str] = None,
) -> None:
'''
Cancel this inter-actor-task context.
async def cancel(self) -> None:
'''Cancel this inter-actor-task context.
Request that the far side cancel it's current linked context,
Timeout quickly in an attempt to sidestep 2-generals...
'''
side = 'caller' if self._portal else 'callee'
if msg:
assert side == 'callee', 'Only callee side can provide cancel msg'
log.cancel(f'Cancelling {side} side of context to {self.chan.uid}')
@ -515,10 +402,8 @@ class Context:
log.cancel(
"Timed out on cancelling remote task "
f"{cid} for {self._portal.channel.uid}")
# callee side remote task
else:
self._cancel_msg = msg
# callee side remote task
# TODO: should we have an explicit cancel message
# or is relaying the local `trio.Cancelled` as an
@ -535,12 +420,9 @@ class Context:
async def open_stream(
self,
backpressure: Optional[bool] = True,
msg_buffer_size: Optional[int] = None,
) -> AsyncGenerator[MsgStream, None]:
'''
Open a ``MsgStream``, a bi-directional stream connected to the
'''Open a ``MsgStream``, a bi-directional stream connected to the
cross-actor (far end) task for this ``Context``.
This context manager must be entered on both the caller and
@ -573,68 +455,50 @@ class Context:
f'Context around {actor.uid[0]}:{task} was already cancelled!'
)
if not self._portal and not self._started_called:
raise RuntimeError(
'Context.started()` must be called before opening a stream'
)
# NOTE: in one way streaming this only happens on the
# caller side inside `Actor.start_remote_task()` so if you try
# caller side inside `Actor.send_cmd()` so if you try
# to send a stop from the caller to the callee in the
# single-direction-stream case you'll get a lookup error
# currently.
ctx = actor.get_context(
self.chan,
self.cid,
msg_buffer_size=msg_buffer_size,
_, recv_chan = actor.get_memchans(
self.chan.uid,
self.cid
)
ctx._backpressure = backpressure
assert ctx is self
# XXX: If the underlying channel feeder receive mem chan has
# been closed then likely client code has already exited
# a ``.open_stream()`` block prior or there was some other
# unanticipated error or cancellation from ``trio``.
if ctx._recv_chan._closed:
if recv_chan._closed:
raise trio.ClosedResourceError(
'The underlying channel for this stream was already closed!?')
async with MsgStream(
ctx=self,
rx_chan=ctx._recv_chan,
) as stream:
rx_chan=recv_chan,
) as rchan:
if self._portal:
self._portal._streams.add(stream)
self._portal._streams.add(rchan)
try:
self._stream_opened = True
# XXX: do we need this?
# ensure we aren't cancelled before yielding the stream
# ensure we aren't cancelled before delivering
# the stream
# await trio.lowlevel.checkpoint()
yield stream
yield rchan
# NOTE: Make the stream "one-shot use". On exit, signal
# XXX: Make the stream "one-shot use". On exit, signal
# ``trio.EndOfChannel``/``StopAsyncIteration`` to the
# far end.
await stream.aclose()
await self.send_stop()
finally:
if self._portal:
try:
self._portal._streams.remove(stream)
except KeyError:
log.warning(
f'Stream was already destroyed?\n'
f'actor: {self.chan.uid}\n'
f'ctx id: {self.cid}'
)
self._portal._streams.remove(rchan)
async def result(self) -> Any:
'''
From a caller side, wait for and return the final result from
'''From a caller side, wait for and return the final result from
the callee side task.
'''
@ -654,7 +518,7 @@ class Context:
try:
self._result = msg['return']
break
except KeyError as msgerr:
except KeyError:
if 'yield' in msg:
# far end task is still streaming to us so discard
@ -668,36 +532,17 @@ class Context:
# internal error should never get here
assert msg.get('cid'), (
"Received internal error at portal?")
raise unpack_error(
msg, self._portal.channel
) from msgerr
raise unpack_error(msg, self._portal.channel)
return self._result
async def started(
self,
value: Optional[Any] = None
async def started(self, value: Optional[Any] = None) -> None:
) -> None:
'''
Indicate to calling actor's task that this linked context
has started and send ``value`` to the other side.
On the calling side ``value`` is the second item delivered
in the tuple returned by ``Portal.open_context()``.
'''
if self._portal:
raise RuntimeError(
f"Caller side context {self} can not call started!")
elif self._started_called:
raise RuntimeError(
f"called 'started' twice on context with {self.chan.uid}")
await self.chan.send({'started': value, 'cid': self.cid})
self._started_called = True
# TODO: do we need a restart api?
# async def restart(self) -> None:

View File

@ -1,40 +1,21 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
``trio`` inspired apis and helpers
"""
from contextlib import asynccontextmanager as acm
from functools import partial
import inspect
from typing import (
Optional,
TYPE_CHECKING,
)
import multiprocessing as mp
from typing import Tuple, List, Dict, Optional
import typing
import warnings
from exceptiongroup import BaseExceptionGroup
import trio
from async_generator import asynccontextmanager
from ._debug import maybe_wait_for_debugger
from ._state import current_actor, is_main_process
from . import _debug
from ._debug import maybe_wait_for_debugger, breakpoint
from ._state import current_actor, is_main_process, is_root_process
from .log import get_logger, get_loglevel
from ._runtime import Actor
from ._actor import Actor
from ._portal import Portal
from ._exceptions import is_multi_cancelled
from ._root import open_root_actor
@ -42,87 +23,56 @@ from . import _state
from . import _spawn
if TYPE_CHECKING:
import multiprocessing as mp
log = get_logger(__name__)
_default_bind_addr: tuple[str, int] = ('127.0.0.1', 0)
_default_bind_addr: Tuple[str, int] = ('127.0.0.1', 0)
class ActorNursery:
'''
The fundamental actor supervision construct: spawn and manage
explicit lifetime and capability restricted, bootstrapped,
``trio.run()`` scheduled sub-processes.
Though the concept of a "process nursery" is different in complexity
and slightly different in semantics then a tradtional single
threaded task nursery, much of the interface is the same. New
processes each require a top level "parent" or "root" task which is
itself no different then any task started by a tradtional
``trio.Nursery``. The main difference is that each "actor" (a
process + ``trio.run()``) contains a full, paralell executing
``trio``-task-tree. The following super powers ensue:
- starting tasks in a child actor are completely independent of
tasks started in the current process. They execute in *parallel*
relative to tasks in the current process and are scheduled by their
own actor's ``trio`` run loop.
- tasks scheduled in a remote process still maintain an SC protocol
across memory boundaries using a so called "structured concurrency
dialogue protocol" which ensures task-hierarchy-lifetimes are linked.
- remote tasks (in another actor) can fail and relay failure back to
the caller task (in some other actor) via a seralized
``RemoteActorError`` which means no zombie process or RPC
initiated task can ever go off on its own.
'''
"""Spawn scoped subprocess actors.
"""
def __init__(
self,
actor: Actor,
ria_nursery: trio.Nursery,
da_nursery: trio.Nursery,
errors: dict[tuple[str, str], BaseException],
spawn_nursery: trio.Nursery,
errors: Dict[Tuple[str, str], Exception],
) -> None:
# self.supervisor = supervisor # TODO
self._actor: Actor = actor
self._ria_nursery = ria_nursery
self._da_nursery = da_nursery
self._children: dict[
tuple[str, str],
tuple[
Actor,
trio.Process | mp.Process,
Optional[Portal],
]
self._spawn_n = spawn_nursery
self._children: Dict[
Tuple[str, str],
Tuple[Actor, mp.Process, Optional[Portal]]
] = {}
# portals spawned with ``run_in_actor()`` are
# cancelled when their "main" result arrives
self._cancel_after_result_on_exit: set = set()
self.cancelled: bool = False
self._cancel_called: bool = False
self._join_procs = trio.Event()
self._at_least_one_child_in_debug: bool = False
self._all_children_reaped = trio.Event()
self.errors = errors
self.exited = trio.Event()
@property
def cancel_called(self) -> bool:
'''
Same principle as ``trio.CancelScope.cancel_called``.
'''
return self._cancel_called
async def start_actor(
self,
name: str,
*,
bind_addr: tuple[str, int] = _default_bind_addr,
rpc_module_paths: list[str] | None = None,
enable_modules: list[str] | None = None,
loglevel: str | None = None, # set log level per subactor
nursery: trio.Nursery | None = None,
debug_mode: Optional[bool] | None = None,
bind_addr: Tuple[str, int] = _default_bind_addr,
rpc_module_paths: List[str] = None,
enable_modules: List[str] = None,
loglevel: str = None, # set log level per subactor
nursery: trio.Nursery = None,
infect_asyncio: bool = False,
debug_mode: Optional[bool] = None,
) -> Portal:
'''
Start a (daemon) actor: an process that has no designated
"main task" besides the runtime.
'''
loglevel = loglevel or self._actor.loglevel or get_loglevel()
# configure and pass runtime state
@ -132,7 +82,6 @@ class ActorNursery:
# allow setting debug policy per actor
if debug_mode is not None:
_rtv['_debug_mode'] = debug_mode
self._at_least_one_child_in_debug = True
enable_modules = enable_modules or []
@ -157,7 +106,7 @@ class ActorNursery:
# start a task to spawn a process
# blocks until process has been started and a portal setup
nursery = nursery or self._da_nursery
nursery = nursery or self._spawn_n
# XXX: the type ignore is actually due to a `mypy` bug
return await nursery.start( # type: ignore
@ -176,19 +125,15 @@ class ActorNursery:
async def run_in_actor(
self,
fn: typing.Callable,
*,
name: Optional[str] = None,
bind_addr: tuple[str, int] = _default_bind_addr,
rpc_module_paths: list[str] | None = None,
enable_modules: list[str] | None = None,
loglevel: str | None = None, # set log level per subactor
bind_addr: Tuple[str, int] = _default_bind_addr,
rpc_module_paths: Optional[List[str]] = None,
enable_modules: List[str] = None,
loglevel: str = None, # set log level per subactor
infect_asyncio: bool = False,
**kwargs, # explicit args to ``fn``
) -> Portal:
"""Spawn a new actor, run a lone task, then terminate the actor and
return its result.
@ -211,7 +156,7 @@ class ActorNursery:
bind_addr=bind_addr,
loglevel=loglevel,
# use the run_in_actor nursery
nursery=self._ria_nursery,
nursery=self._spawn_n,
infect_asyncio=infect_asyncio,
)
@ -232,80 +177,111 @@ class ActorNursery:
)
return portal
async def cancel(self, hard_kill: bool = False) -> None:
"""Cancel this nursery by instructing each subactor to cancel
async def cancel(
self,
) -> None:
"""
Cancel this nursery by instructing each subactor to cancel
itself and wait for all subactors to terminate.
If ``hard_killl`` is set to ``True`` then kill the processes
directly without any far end graceful ``trio`` cancellation.
"""
self.cancelled = True
# entries may be poppsed by the spawning backend as
# actors cancel individually
childs = self._children.copy()
log.cancel(f"Cancelling nursery in {self._actor.uid}")
with trio.move_on_after(3) as cs:
async with trio.open_nursery() as nursery:
for subactor, proc, portal in self._children.values():
# TODO: are we ever even going to use this or
# is the spawning backend responsible for such
# things? I'm thinking latter.
if hard_kill:
proc.terminate()
else:
if portal is None: # actor hasn't fully spawned yet
event = self._actor._peer_connected[subactor.uid]
if self.cancel_called:
log.warning(
f"{subactor.uid} wasn't finished spawning?")
f'Nursery with children {len(childs)} already cancelled')
return
await event.wait()
log.cancel(
f'Cancelling nursery in {self._actor.uid} with children\n'
f'{childs.keys()}'
)
self._cancel_called = True
# channel/portal should now be up
_, _, portal = self._children[subactor.uid]
# XXX should be impossible to get here
# unless method was called from within
# shielded cancel scope.
if portal is None:
# cancelled while waiting on the event
# to arrive
chan = self._actor._peers[subactor.uid][-1]
if chan:
portal = Portal(chan)
else: # there's no other choice left
proc.terminate()
# spawn cancel tasks for each sub-actor
assert portal
if portal.channel.connected():
nursery.start_soon(portal.cancel_actor)
# if we cancelled the cancel (we hung cancelling remote actors)
# then hard kill all sub-processes
if cs.cancelled_caught:
log.error(
f"Failed to cancel {self}\nHard killing process tree!")
for subactor, proc, portal in self._children.values():
log.warning(f"Hard killing process {proc}")
proc.terminate()
# mark ourselves as having (tried to have) cancelled all subactors
# wake up all spawn tasks to move on as those nursery
# has ``__aexit__()``-ed
self._join_procs.set()
await maybe_wait_for_debugger()
@acm
# one-cancels-all strat
try:
async with trio.open_nursery() as cancel_sender:
for subactor, proc, portal in childs.values():
if not portal.cancel_called and portal.channel.connected():
cancel_sender.start_soon(portal.cancel_actor)
except trio.MultiError as err:
_err = err
log.exception(f'{self} errors during cancel')
# await breakpoint()
# # LOL, ok so multiprocessing requires this for some reason..
# with trio.CancelScope(shield=True):
# await trio.lowlevel.checkpoint()
# cancel all spawner tasks
# self._spawn_n.cancel_scope.cancel()
self.cancelled = True
async def _handle_err(
self,
err: BaseException,
portal: Optional[Portal] = None,
is_ctx_error: bool = False,
) -> bool:
# XXX: hypothetically an error could be
# raised and then a cancel signal shows up
# slightly after in which case the `else:`
# block here might not complete? For now,
# shield both.
if is_ctx_error:
assert not portal
uid = self._actor.uid
else:
uid = portal.channel.uid
if err not in self.errors.values():
self.errors[uid] = err
with trio.CancelScope(shield=True):
etype = type(err)
if etype in (
trio.Cancelled,
KeyboardInterrupt
) or (
is_multi_cancelled(err)
):
log.cancel(
f"Nursery for {current_actor().uid} "
f"was cancelled with {etype}")
else:
log.error(
f"Nursery for {current_actor().uid} "
f"errored from {uid} with\n{err}")
# cancel all subactors
await self.cancel()
return True
log.warning(f'Skipping duplicate error for {uid}')
return False
@asynccontextmanager
async def _open_and_supervise_one_cancels_all_nursery(
actor: Actor,
) -> typing.AsyncGenerator[ActorNursery, None]:
# TODO: yay or nay?
__tracebackhide__ = True
# the collection of errors retreived from spawned sub-actors
errors: dict[tuple[str, str], BaseException] = {}
errors: Dict[Tuple[str, str], Exception] = {}
# This is the outermost level "deamon actor" nursery. It is awaited
# **after** the below inner "run in actor nursery". This allows for
@ -313,10 +289,14 @@ async def _open_and_supervise_one_cancels_all_nursery(
# a supervisor strategy **before** blocking indefinitely to wait for
# actors spawned in "daemon mode" (aka started using
# ``ActorNursery.start_actor()``).
src_err: Optional[BaseException] = None
nurse_err: Optional[BaseException] = None
# errors from this daemon actor nursery bubble up to caller
async with trio.open_nursery() as da_nursery:
try:
async with trio.open_nursery() as spawn_n:
# try:
# This is the inner level "run in actor" nursery. It is
# awaited first since actors spawned in this way (using
# ``ActorNusery.run_in_actor()``) are expected to only
@ -325,132 +305,106 @@ async def _open_and_supervise_one_cancels_all_nursery(
# immediately raised for handling by a supervisor strategy.
# As such if the strategy propagates any error(s) upwards
# the above "daemon actor" nursery will be notified.
async with trio.open_nursery() as ria_nursery:
anursery = ActorNursery(
actor,
ria_nursery,
da_nursery,
spawn_n,
errors
)
try:
# spawning of actors happens in the caller's scope
# after we yield upwards
try:
yield anursery
# When we didn't error in the caller's scope,
# signal all process-monitor-tasks to conduct
# the "hard join phase".
log.runtime(
f"Waiting on subactors {anursery._children} "
"to complete"
)
# signal all process monitor tasks to conduct
# hard join phase.
# await maybe_wait_for_debugger()
# log.error('joing trigger NORMAL')
anursery._join_procs.set()
except BaseException as inner_err:
errors[actor.uid] = inner_err
# NOTE: there are 2 cases for error propagation:
# - an actor which is ``.run_in_actor()`` invoked
# runs a single task and reports the error upwards
# - the top level task which opened this nursery (in the
# parent actor) raises. In this case the raise can come
# from a variety of places:
# - user task code unrelated to the nursery/child actors
# - a ``RemoteActorError`` propagated up through the
# portal api from a child actor which will look the exact
# same as a user code failure.
# If we error in the root but the debugger is
# engaged we don't want to prematurely kill (and
# thus clobber access to) the local tty since it
# will make the pdb repl unusable.
# Instead try to wait for pdb to be released before
# tearing down.
await maybe_wait_for_debugger(
child_in_debug=anursery._at_least_one_child_in_debug
)
except BaseException as err:
# anursery._join_procs.set()
src_err = err
# if the caller's scope errored then we activate our
# one-cancels-all supervisor strategy (don't
# worry more are coming).
anursery._join_procs.set()
# with trio.CancelScope(shield=True):
should_raise = await anursery._handle_err(err, is_ctx_error=True)
# XXX: hypothetically an error could be
# raised and then a cancel signal shows up
# slightly after in which case the `else:`
# block here might not complete? For now,
# shield both.
with trio.CancelScope(shield=True):
etype = type(inner_err)
if etype in (
trio.Cancelled,
KeyboardInterrupt
) or (
is_multi_cancelled(inner_err)
):
log.cancel(
f"Nursery for {current_actor().uid} "
f"was cancelled with {etype}")
else:
log.exception(
f"Nursery for {current_actor().uid} "
f"errored with")
# cancel all subactors
await anursery.cancel()
# ria_nursery scope end
# TODO: this is the handler around the ``.run_in_actor()``
# nursery. Ideally we can drop this entirely in the future as
# the whole ``.run_in_actor()`` API should be built "on top of"
# this lower level spawn-request-cancel "daemon actor" API where
# a local in-actor task nursery is used with one-to-one task
# + `await Portal.run()` calls and the results/errors are
# handled directly (inline) and errors by the local nursery.
except (
Exception,
BaseExceptionGroup,
trio.Cancelled
) as err:
# XXX: yet another guard before allowing the cancel
# sequence in case a (single) child is in debug.
await maybe_wait_for_debugger(
child_in_debug=anursery._at_least_one_child_in_debug
)
# If actor-local error was raised while waiting on
# ".run_in_actor()" actors then we also want to cancel all
# remaining sub-actors (due to our lone strategy:
# one-cancels-all).
log.cancel(f"Nursery cancelling due to {err}")
if anursery._children:
with trio.CancelScope(shield=True):
await anursery.cancel()
# XXX: raising here causes some cancellation
# / multierror tests to fail because of what appears to
# be double raise? we probably need to see how `trio`
# does this case..
if should_raise:
raise
# except trio.MultiError as err:
except BaseException as err:
# nursery bubble up
nurse_err = err
# do not double cancel subactors
if not anursery.cancelled:
await anursery._handle_err(err)
raise
finally:
if anursery._children:
log.cancel(f'Waiting on remaining children {anursery._children}')
with trio.CancelScope(shield=True):
await anursery._all_children_reaped.wait()
log.cancel(f'All children complete for {anursery}')
# No errors were raised while awaiting ".run_in_actor()"
# actors but those actors may have returned remote errors as
# results (meaning they errored remotely and have relayed
# those errors back to this parent actor). The errors are
# collected in ``errors`` so cancel all actors, summarize
# all errors and re-raise.
if errors:
if anursery._children:
with trio.CancelScope(shield=True):
await anursery.cancel()
# use `BaseExceptionGroup` as needed
# await breakpoint()
if errors:
# if nurse_err or src_err:
if anursery._children:
raise RuntimeError("WHERE TF IS THE ZOMBIE LORD!?!?!")
# with trio.CancelScope(shield=True):
# await anursery.cancel()
# use `MultiError` as needed
if len(errors) > 1:
raise BaseExceptionGroup(
'tractor.ActorNursery errored with',
tuple(errors.values()),
)
raise trio.MultiError(tuple(errors.values()))
else:
raise list(errors.values())[0]
# da_nursery scope end - nursery checkpoint
# final exit
log.cancel(f'{anursery} terminated gracefully')
# XXX" honestly no idea why this is needed but sure..
if isinstance(src_err, KeyboardInterrupt) and anursery.cancelled:
raise src_err
@acm
@asynccontextmanager
async def open_nursery(
**kwargs,
) -> typing.AsyncGenerator[ActorNursery, None]:
'''
"""
Create and yield a new ``ActorNursery`` to be used for spawning
structured concurrent subactors.
@ -464,7 +418,7 @@ async def open_nursery(
anyway since it is more clear from the following nested nurseries
which cancellation scopes correspond to each spawned subactor set.
'''
"""
implicit_runtime = False
actor = current_actor(err_on_no_runtime=False)
@ -482,23 +436,18 @@ async def open_nursery(
async with open_root_actor(**kwargs) as actor:
assert actor is current_actor()
try:
# try:
async with _open_and_supervise_one_cancels_all_nursery(
actor
) as anursery:
yield anursery
finally:
anursery.exited.set()
else: # sub-nursery case
try:
async with _open_and_supervise_one_cancels_all_nursery(
actor
) as anursery:
yield anursery
finally:
anursery.exited.set()
finally:
log.debug("Nursery teardown complete")

View File

@ -1,29 +0,0 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Experimental APIs and subsystems not yet validated to be included as
built-ins.
This is a staging area for ``tractor.builtin``.
'''
from ._pubsub import pub as msgpub
__all__ = [
'msgpub',
]

View File

@ -1,332 +0,0 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Single target entrypoint, remote-task, dynamic (no push if no consumer)
pubsub API using async an generator which muli-plexes to consumers by
key.
NOTE: this module is likely deprecated by the new bi-directional streaming
support provided by ``tractor.Context.open_stream()`` and friends.
"""
from __future__ import annotations
import inspect
import typing
from typing import (
Any,
Callable,
)
from functools import partial
from async_generator import aclosing
import trio
import wrapt
from ..log import get_logger
from .._streaming import Context
__all__ = ['pub']
log = get_logger('messaging')
async def fan_out_to_ctxs(
pub_async_gen_func: typing.Callable, # it's an async gen ... gd mypy
topics2ctxs: dict[str, list],
packetizer: typing.Callable | None = None,
) -> None:
'''
Request and fan out quotes to each subscribed actor channel.
'''
def get_topics():
return tuple(topics2ctxs.keys())
agen = pub_async_gen_func(get_topics=get_topics)
async with aclosing(agen) as pub_gen:
async for published in pub_gen:
ctx_payloads: list[tuple[Context, Any]] = []
for topic, data in published.items():
log.debug(f"publishing {topic, data}")
# build a new dict packet or invoke provided packetizer
if packetizer is None:
packet = {topic: data}
else:
packet = packetizer(topic, data)
for ctx in topics2ctxs.get(topic, list()):
ctx_payloads.append((ctx, packet))
if not ctx_payloads:
log.debug(f"Unconsumed values:\n{published}")
# deliver to each subscriber (fan out)
if ctx_payloads:
for ctx, payload in ctx_payloads:
try:
await ctx.send_yield(payload)
except (
# That's right, anything you can think of...
trio.ClosedResourceError, ConnectionResetError,
ConnectionRefusedError,
):
log.warning(f"{ctx.chan} went down?")
for ctx_list in topics2ctxs.values():
try:
ctx_list.remove(ctx)
except ValueError:
continue
if not get_topics():
log.warning(f"No subscribers left for {pub_gen}")
break
def modify_subs(
topics2ctxs: dict[str, list[Context]],
topics: set[str],
ctx: Context,
) -> None:
"""Absolute symbol subscription list for each quote stream.
Effectively a symbol subscription api.
"""
log.info(f"{ctx.chan.uid} changed subscription to {topics}")
# update map from each symbol to requesting client's chan
for topic in topics:
topics2ctxs.setdefault(topic, list()).append(ctx)
# remove any existing symbol subscriptions if symbol is not
# found in ``symbols``
# TODO: this can likely be factored out into the pub-sub api
for topic in filter(
lambda topic: topic not in topics, topics2ctxs.copy()
):
ctx_list = topics2ctxs.get(topic)
if ctx_list:
try:
ctx_list.remove(ctx)
except ValueError:
pass
if not ctx_list:
# pop empty sets which will trigger bg quoter task termination
topics2ctxs.pop(topic)
_pub_state: dict[str, dict] = {}
_pubtask2lock: dict[str, trio.StrictFIFOLock] = {}
def pub(
wrapped: typing.Callable | None = None,
*,
tasks: set[str] = set(),
):
"""Publisher async generator decorator.
A publisher can be called multiple times from different actors but
will only spawn a finite set of internal tasks to stream values to
each caller. The ``tasks: set[str]`` argument to the decorator
specifies the names of the mutex set of publisher tasks. When the
publisher function is called, an argument ``task_name`` must be
passed to specify which task (of the set named in ``tasks``) should
be used. This allows for using the same publisher with different
input (arguments) without allowing more concurrent tasks then
necessary.
Values yielded from the decorated async generator must be
``dict[str, dict[str, Any]]`` where the fist level key is the topic
string and determines which subscription the packet will be
delivered to and the value is a packet ``dict[str, Any]`` by default
of the form:
.. ::python
{topic: str: value: Any}
The caller can instead opt to pass a ``packetizer`` callback who's
return value will be delivered as the published response.
The decorated async generator function must accept an argument
:func:`get_topics` which dynamically returns the tuple of current
subscriber topics:
.. code:: python
from tractor.msg import pub
@pub(tasks={'source_1', 'source_2'})
async def pub_service(get_topics):
data = await web_request(endpoints=get_topics())
for item in data:
yield data['key'], data
The publisher must be called passing in the following arguments:
- ``topics: set[str]`` the topic sequence or "subscriptions"
- ``task_name: str`` the task to use (if ``tasks`` was passed)
- ``ctx: Context`` the tractor context (only needed if calling the
pub func without a nursery, otherwise this is provided implicitly)
- packetizer: ``Callable[[str, Any], Any]`` a callback who receives
the topic and value from the publisher function each ``yield`` such that
whatever is returned is sent as the published value to subscribers of
that topic. By default this is a dict ``{topic: str: value: Any}``.
As an example, to make a subscriber call the above function:
.. code:: python
from functools import partial
import tractor
async with tractor.open_nursery() as n:
portal = n.run_in_actor(
'publisher', # actor name
partial( # func to execute in it
pub_service,
topics=('clicks', 'users'),
task_name='source1',
)
)
async for value in await portal.result():
print(f"Subscriber received {value}")
Here, you don't need to provide the ``ctx`` argument since the
remote actor provides it automatically to the spawned task. If you
were to call ``pub_service()`` directly from a wrapping function you
would need to provide this explicitly.
Remember you only need this if you need *a finite set of tasks*
running in a single actor to stream data to an arbitrary number of
subscribers. If you are ok to have a new task running for every call
to ``pub_service()`` then probably don't need this.
"""
global _pubtask2lock
# handle the decorator not called with () case
if wrapped is None:
return partial(pub, tasks=tasks)
task2lock: dict[str, trio.StrictFIFOLock] = {}
for name in tasks:
task2lock[name] = trio.StrictFIFOLock()
@wrapt.decorator
async def wrapper(agen, instance, args, kwargs):
# XXX: this is used to extract arguments properly as per the
# `wrapt` docs
async def _execute(
ctx: Context,
topics: set[str],
*args,
# *,
task_name: str | None = None, # default: only one task allocated
packetizer: Callable | None = None,
**kwargs,
):
if task_name is None:
task_name = trio.lowlevel.current_task().name
if tasks and task_name not in tasks:
raise TypeError(
f"{agen} must be called with a `task_name` named "
f"argument with a value from {tasks}")
elif not tasks and not task2lock:
# add a default root-task lock if none defined
task2lock[task_name] = trio.StrictFIFOLock()
_pubtask2lock.update(task2lock)
topics = set(topics)
lock = _pubtask2lock[task_name]
all_subs = _pub_state.setdefault('_subs', {})
topics2ctxs = all_subs.setdefault(task_name, {})
try:
modify_subs(topics2ctxs, topics, ctx)
# block and let existing feed task deliver
# stream data until it is cancelled in which case
# the next waiting task will take over and spawn it again
async with lock:
# no data feeder task yet; so start one
respawn = True
while respawn:
respawn = False
log.info(
f"Spawning data feed task for {funcname}")
try:
# unblocks when no more symbols subscriptions exist
# and the streamer task terminates
await fan_out_to_ctxs(
pub_async_gen_func=partial(
agen, *args, **kwargs),
topics2ctxs=topics2ctxs,
packetizer=packetizer,
)
log.info(
f"Terminating stream task {task_name or ''}"
f" for {agen.__name__}")
except trio.BrokenResourceError:
log.exception("Respawning failed data feed task")
respawn = True
finally:
# remove all subs for this context
modify_subs(topics2ctxs, set(), ctx)
# if there are truly no more subscriptions with this broker
# drop from broker subs dict
if not any(topics2ctxs.values()):
log.info(
f"No more subscriptions for publisher {task_name}")
# invoke it
await _execute(*args, **kwargs)
funcname = wrapped.__name__
if not inspect.isasyncgenfunction(wrapped):
raise TypeError(
f"Publisher {funcname} must be an async generator function"
)
if 'get_topics' not in inspect.signature(wrapped).parameters:
raise TypeError(
f"Publisher async gen {funcname} must define a "
"`get_topics` argument"
)
# XXX: manually monkey the wrapped function since
# ``wrapt.decorator`` doesn't seem to want to play nice with its
# whole "adapter" thing...
wrapped._tractor_stream_function = True # type: ignore
return wrapper(wrapped)

View File

@ -1,35 +1,16 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Log like a forester!
"""
from collections.abc import Mapping
import sys
import logging
import colorlog # type: ignore
from typing import Optional
import trio
from ._state import current_actor
from ._state import ActorContextInfo
_proj_name: str = 'tractor'
_default_loglevel: str = 'ERROR'
_proj_name = 'tractor'
_default_loglevel = 'ERROR'
# Super sexy formatting thanks to ``colorlog``.
# (NOTE: we use the '{' format style)
@ -38,8 +19,7 @@ LOG_FORMAT = (
# "{bold_white}{log_color}{asctime}{reset}"
"{log_color}{asctime}{reset}"
" {bold_white}{thin_white}({reset}"
"{thin_white}{actor_name}[{actor_uid}], "
"{process}, {task}){reset}{bold_white}{thin_white})"
"{thin_white}{actor}, {process}, {task}){reset}{bold_white}{thin_white})"
" {reset}{log_color}[{reset}{bold_log_color}{levelname}{reset}{log_color}]"
" {log_color}{name}"
" {thin_white}{filename}{log_color}:{reset}{thin_white}{lineno}{log_color}"
@ -139,40 +119,9 @@ class StackLevelAdapter(logging.LoggerAdapter):
)
_conc_name_getters = {
'task': lambda: trio.lowlevel.current_task().name,
'actor': lambda: current_actor(),
'actor_name': lambda: current_actor().name,
'actor_uid': lambda: current_actor().uid[1][:6],
}
class ActorContextInfo(Mapping):
"Dyanmic lookup for local actor and task names"
_context_keys = (
'task',
'actor',
'actor_name',
'actor_uid',
)
def __len__(self):
return len(self._context_keys)
def __iter__(self):
return iter(self._context_keys)
def __getitem__(self, key: str) -> str:
try:
return _conc_name_getters[key]()
except RuntimeError:
# no local actor/task context initialized yet
return f'no {key} context'
def get_logger(
name: str | None = None,
name: str = None,
_root_name: str = _proj_name,
) -> StackLevelAdapter:
@ -207,7 +156,7 @@ def get_logger(
def get_console_log(
level: str | None = None,
level: str = None,
**kwargs,
) -> logging.LoggerAdapter:
'''Get the package logger and enable a handler which writes to stderr.
@ -240,5 +189,5 @@ def get_console_log(
return log
def get_loglevel() -> str:
def get_loglevel() -> Optional[str]:
return _default_loglevel

View File

@ -1,80 +1,312 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
"""
Messaging pattern APIs and helpers.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
NOTE: this module is likely deprecated by the new bi-directional streaming
support provided by ``tractor.Context.open_stream()`` and friends.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
"""
import inspect
import typing
from typing import Dict, Any, Set, Callable, List, Tuple
from functools import partial
from async_generator import aclosing
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import trio
import wrapt
'''
Built-in messaging patterns, types, APIs and helpers.
from .log import get_logger
from ._streaming import Context
'''
__all__ = ['pub']
# TODO: integration with our ``enable_modules: list[str]`` caps sys.
# ``pkgutil.resolve_name()`` internally uses
# ``importlib.import_module()`` which can be filtered by inserting
# a ``MetaPathFinder`` into ``sys.meta_path`` (which we could do before
# entering the ``_runtime.process_messages()`` loop).
# - https://github.com/python/cpython/blob/main/Lib/pkgutil.py#L645
# - https://stackoverflow.com/questions/1350466/preventing-python-code-from-importing-certain-modules
# - https://stackoverflow.com/a/63320902
# - https://docs.python.org/3/library/sys.html#sys.meta_path
# the new "Implicit Namespace Packages" might be relevant?
# - https://www.python.org/dev/peps/pep-0420/
# add implicit serialized message type support so that paths can be
# handed directly to IPC primitives such as streams and `Portal.run()`
# calls:
# - via ``msgspec``:
# - https://jcristharif.com/msgspec/api.html#struct
# - https://jcristharif.com/msgspec/extending.html
# via ``msgpack-python``:
# - https://github.com/msgpack/msgpack-python#packingunpacking-of-custom-data-type
from __future__ import annotations
from pkgutil import resolve_name
log = get_logger('messaging')
class NamespacePath(str):
'''
A serializeable description of a (function) Python object location
described by the target's module path and namespace key meant as
a message-native "packet" to allows actors to point-and-load objects
by absolute reference.
async def fan_out_to_ctxs(
pub_async_gen_func: typing.Callable, # it's an async gen ... gd mypy
topics2ctxs: Dict[str, list],
packetizer: typing.Callable = None,
) -> None:
"""Request and fan out quotes to each subscribed actor channel.
"""
def get_topics():
return tuple(topics2ctxs.keys())
'''
_ref: object = None
agen = pub_async_gen_func(get_topics=get_topics)
def load_ref(self) -> object:
if self._ref is None:
self._ref = resolve_name(self)
return self._ref
async with aclosing(agen) as pub_gen:
def to_tuple(
self,
async for published in pub_gen:
) -> tuple[str, str]:
ref = self.load_ref()
return ref.__module__, getattr(ref, '__name__', '')
ctx_payloads: List[Tuple[Context, Any]] = []
@classmethod
def from_ref(
cls,
ref,
for topic, data in published.items():
log.debug(f"publishing {topic, data}")
) -> NamespacePath:
return cls(':'.join(
(ref.__module__,
getattr(ref, '__name__', ''))
))
# build a new dict packet or invoke provided packetizer
if packetizer is None:
packet = {topic: data}
else:
packet = packetizer(topic, data)
for ctx in topics2ctxs.get(topic, list()):
ctx_payloads.append((ctx, packet))
if not ctx_payloads:
log.debug(f"Unconsumed values:\n{published}")
# deliver to each subscriber (fan out)
if ctx_payloads:
for ctx, payload in ctx_payloads:
try:
await ctx.send_yield(payload)
except (
# That's right, anything you can think of...
trio.ClosedResourceError, ConnectionResetError,
ConnectionRefusedError,
):
log.warning(f"{ctx.chan} went down?")
for ctx_list in topics2ctxs.values():
try:
ctx_list.remove(ctx)
except ValueError:
continue
if not get_topics():
log.warning(f"No subscribers left for {pub_gen}")
break
def modify_subs(
topics2ctxs: Dict[str, List[Context]],
topics: Set[str],
ctx: Context,
) -> None:
"""Absolute symbol subscription list for each quote stream.
Effectively a symbol subscription api.
"""
log.info(f"{ctx.chan.uid} changed subscription to {topics}")
# update map from each symbol to requesting client's chan
for topic in topics:
topics2ctxs.setdefault(topic, list()).append(ctx)
# remove any existing symbol subscriptions if symbol is not
# found in ``symbols``
# TODO: this can likely be factored out into the pub-sub api
for topic in filter(
lambda topic: topic not in topics, topics2ctxs.copy()
):
ctx_list = topics2ctxs.get(topic)
if ctx_list:
try:
ctx_list.remove(ctx)
except ValueError:
pass
if not ctx_list:
# pop empty sets which will trigger bg quoter task termination
topics2ctxs.pop(topic)
_pub_state: Dict[str, dict] = {}
_pubtask2lock: Dict[str, trio.StrictFIFOLock] = {}
def pub(
wrapped: typing.Callable = None,
*,
tasks: Set[str] = set(),
send_on_connect: Any = None,
):
"""Publisher async generator decorator.
A publisher can be called multiple times from different actors but
will only spawn a finite set of internal tasks to stream values to
each caller. The ``tasks: Set[str]`` argument to the decorator
specifies the names of the mutex set of publisher tasks. When the
publisher function is called, an argument ``task_name`` must be
passed to specify which task (of the set named in ``tasks``) should
be used. This allows for using the same publisher with different
input (arguments) without allowing more concurrent tasks then
necessary.
Values yielded from the decorated async generator must be
``Dict[str, Dict[str, Any]]`` where the fist level key is the topic
string and determines which subscription the packet will be
delivered to and the value is a packet ``Dict[str, Any]`` by default
of the form:
.. ::python
{topic: str: value: Any}
The caller can instead opt to pass a ``packetizer`` callback who's
return value will be delivered as the published response.
The decorated async generator function must accept an argument
:func:`get_topics` which dynamically returns the tuple of current
subscriber topics:
.. code:: python
from tractor.msg import pub
@pub(tasks={'source_1', 'source_2'})
async def pub_service(get_topics):
data = await web_request(endpoints=get_topics())
for item in data:
yield data['key'], data
The publisher must be called passing in the following arguments:
- ``topics: Set[str]`` the topic sequence or "subscriptions"
- ``task_name: str`` the task to use (if ``tasks`` was passed)
- ``ctx: Context`` the tractor context (only needed if calling the
pub func without a nursery, otherwise this is provided implicitly)
- packetizer: ``Callable[[str, Any], Any]`` a callback who receives
the topic and value from the publisher function each ``yield`` such that
whatever is returned is sent as the published value to subscribers of
that topic. By default this is a dict ``{topic: str: value: Any}``.
As an example, to make a subscriber call the above function:
.. code:: python
from functools import partial
import tractor
async with tractor.open_nursery() as n:
portal = n.run_in_actor(
'publisher', # actor name
partial( # func to execute in it
pub_service,
topics=('clicks', 'users'),
task_name='source1',
)
)
async for value in await portal.result():
print(f"Subscriber received {value}")
Here, you don't need to provide the ``ctx`` argument since the
remote actor provides it automatically to the spawned task. If you
were to call ``pub_service()`` directly from a wrapping function you
would need to provide this explicitly.
Remember you only need this if you need *a finite set of tasks*
running in a single actor to stream data to an arbitrary number of
subscribers. If you are ok to have a new task running for every call
to ``pub_service()`` then probably don't need this.
"""
global _pubtask2lock
# handle the decorator not called with () case
if wrapped is None:
return partial(pub, tasks=tasks, send_on_connect=send_on_connect)
task2lock: Dict[str, trio.StrictFIFOLock] = {}
for name in tasks:
task2lock[name] = trio.StrictFIFOLock()
@wrapt.decorator
async def wrapper(agen, instance, args, kwargs):
# XXX: this is used to extract arguments properly as per the
# `wrapt` docs
async def _execute(
ctx: Context,
topics: Set[str],
*args,
# *,
task_name: str = None, # default: only one task allocated
packetizer: Callable = None,
**kwargs,
):
if task_name is None:
task_name = trio.lowlevel.current_task().name
if tasks and task_name not in tasks:
raise TypeError(
f"{agen} must be called with a `task_name` named "
f"argument with a value from {tasks}")
elif not tasks and not task2lock:
# add a default root-task lock if none defined
task2lock[task_name] = trio.StrictFIFOLock()
_pubtask2lock.update(task2lock)
topics = set(topics)
lock = _pubtask2lock[task_name]
all_subs = _pub_state.setdefault('_subs', {})
topics2ctxs = all_subs.setdefault(task_name, {})
try:
modify_subs(topics2ctxs, topics, ctx)
# if specified send the startup message back to consumer
if send_on_connect is not None:
await ctx.send_yield(send_on_connect)
# block and let existing feed task deliver
# stream data until it is cancelled in which case
# the next waiting task will take over and spawn it again
async with lock:
# no data feeder task yet; so start one
respawn = True
while respawn:
respawn = False
log.info(
f"Spawning data feed task for {funcname}")
try:
# unblocks when no more symbols subscriptions exist
# and the streamer task terminates
await fan_out_to_ctxs(
pub_async_gen_func=partial(
agen, *args, **kwargs),
topics2ctxs=topics2ctxs,
packetizer=packetizer,
)
log.info(
f"Terminating stream task {task_name or ''}"
f" for {agen.__name__}")
except trio.BrokenResourceError:
log.exception("Respawning failed data feed task")
respawn = True
finally:
# remove all subs for this context
modify_subs(topics2ctxs, set(), ctx)
# if there are truly no more subscriptions with this broker
# drop from broker subs dict
if not any(topics2ctxs.values()):
log.info(
f"No more subscriptions for publisher {task_name}")
# invoke it
await _execute(*args, **kwargs)
funcname = wrapped.__name__
if not inspect.isasyncgenfunction(wrapped):
raise TypeError(
f"Publisher {funcname} must be an async generator function"
)
if 'get_topics' not in inspect.signature(wrapped).parameters:
raise TypeError(
f"Publisher async gen {funcname} must define a "
"`get_topics` argument"
)
# XXX: manually monkey the wrapped function since
# ``wrapt.decorator`` doesn't seem to want to play nice with its
# whole "adapter" thing...
wrapped._tractor_stream_function = True # type: ignore
return wrapper(wrapped)

View File

@ -0,0 +1 @@
from ._tractor_test import tractor_test

View File

@ -0,0 +1,89 @@
import inspect
import platform
from functools import partial, wraps
import trio
import tractor
# from tractor import run
__all__ = ['tractor_test']
def tractor_test(fn):
"""
Use:
@tractor_test
async def test_whatever():
await ...
If fixtures:
- ``arb_addr`` (a socket addr tuple where arbiter is listening)
- ``loglevel`` (logging level passed to tractor internals)
- ``start_method`` (subprocess spawning backend)
are defined in the `pytest` fixture space they will be automatically
injected to tests declaring these funcargs.
"""
@wraps(fn)
def wrapper(
*args,
loglevel=None,
arb_addr=None,
start_method=None,
**kwargs
):
# __tracebackhide__ = True
if 'arb_addr' in inspect.signature(fn).parameters:
# injects test suite fixture value to test as well
# as `run()`
kwargs['arb_addr'] = arb_addr
if 'loglevel' in inspect.signature(fn).parameters:
# allows test suites to define a 'loglevel' fixture
# that activates the internal logging
kwargs['loglevel'] = loglevel
if start_method is None:
if platform.system() == "Windows":
start_method = 'spawn'
else:
start_method = 'trio'
if 'start_method' in inspect.signature(fn).parameters:
# set of subprocess spawning backends
kwargs['start_method'] = start_method
if kwargs:
# use explicit root actor start
async def _main():
async with tractor.open_root_actor(
# **kwargs,
arbiter_addr=arb_addr,
loglevel=loglevel,
start_method=start_method,
# TODO: only enable when pytest is passed --pdb
# debug_mode=True,
) as actor:
await fn(*args, **kwargs)
main = _main
else:
# use implicit root actor start
main = partial(fn, *args, **kwargs)
return trio.run(main)
# arbiter_addr=arb_addr,
# loglevel=loglevel,
# start_method=start_method,
# )
return wrapper

View File

@ -1,27 +1,9 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Infection apis for ``asyncio`` loops running ``trio`` using guest mode.
'''
import asyncio
from asyncio.exceptions import CancelledError
from contextlib import asynccontextmanager as acm
from dataclasses import dataclass
import inspect
from typing import (
Any,
@ -32,15 +14,9 @@ from typing import (
)
import trio
from outcome import Error
from .log import get_logger
from .log import get_logger, get_console_log
from ._state import current_actor
from ._exceptions import AsyncioCancelled
from .trionics._broadcast import (
broadcast_receiver,
BroadcastReceiver,
)
log = get_logger(__name__)
@ -48,130 +24,49 @@ log = get_logger(__name__)
__all__ = ['run_task', 'run_as_asyncio_guest']
@dataclass
class LinkedTaskChannel(trio.abc.Channel):
'''
A "linked task channel" which allows for two-way synchronized msg
passing between a ``trio``-in-guest-mode task and an ``asyncio``
task scheduled in the host loop.
# async def consume_asyncgen(
# to_trio: trio.MemorySendChannel,
# coro: AsyncIterator,
# ) -> None:
# """Stream async generator results back to ``trio``.
'''
_to_aio: asyncio.Queue
_from_aio: trio.MemoryReceiveChannel
_to_trio: trio.MemorySendChannel
_trio_cs: trio.CancelScope
_aio_task_complete: trio.Event
_trio_exited: bool = False
# set after ``asyncio.create_task()``
_aio_task: Optional[asyncio.Task] = None
_aio_err: Optional[BaseException] = None
_broadcaster: Optional[BroadcastReceiver] = None
async def aclose(self) -> None:
await self._from_aio.aclose()
async def receive(self) -> Any:
async with translate_aio_errors(
self,
# XXX: obviously this will deadlock if an on-going stream is
# being procesed.
# wait_on_aio_task=False,
):
# TODO: do we need this to guarantee asyncio code get's
# cancelled in the case where the trio side somehow creates
# a state where the asyncio cycle-task isn't getting the
# cancel request sent by (in theory) the last checkpoint
# cycle on the trio side?
# await trio.lowlevel.checkpoint()
return await self._from_aio.receive()
async def wait_asyncio_complete(self) -> None:
await self._aio_task_complete.wait()
# def cancel_asyncio_task(self) -> None:
# self._aio_task.cancel()
async def send(self, item: Any) -> None:
'''
Send a value through to the asyncio task presuming
it defines a ``from_trio`` argument, if it does not
this method will raise an error.
'''
self._to_aio.put_nowait(item)
def closed(self) -> bool:
return self._from_aio._closed # type: ignore
# TODO: shoud we consider some kind of "decorator" system
# that checks for structural-typing compatibliity and then
# automatically adds this ctx-mngr-as-method machinery?
@acm
async def subscribe(
self,
) -> AsyncIterator[BroadcastReceiver]:
'''
Allocate and return a ``BroadcastReceiver`` which delegates
to this inter-task channel.
This allows multiple local tasks to receive each their own copy
of this message stream.
See ``tractor._streaming.MsgStream.subscribe()`` for further
similar details.
'''
if self._broadcaster is None:
bcast = self._broadcaster = broadcast_receiver(
self,
# use memory channel size by default
self._from_aio._state.max_buffer_size, # type: ignore
receive_afunc=self.receive,
)
self.receive = bcast.receive # type: ignore
async with self._broadcaster.subscribe() as bstream:
assert bstream.key != self._broadcaster.key
assert bstream._recv == self._broadcaster._recv
yield bstream
# ``from_trio`` might eventually be used here for
# bidirectional streaming.
# """
# async for item in coro:
# to_trio.send_nowait(item)
def _run_asyncio_task(
func: Callable,
*,
qsize: int = 1,
# _treat_as_stream: bool = False,
provide_channels: bool = False,
**kwargs,
) -> LinkedTaskChannel:
'''
) -> Any:
"""
Run an ``asyncio`` async function or generator in a task, return
or stream the result back to ``trio``.
'''
__tracebackhide__ = True
"""
if not current_actor().is_infected_aio():
raise RuntimeError("`infect_asyncio` mode is not enabled!?")
# ITC (inter task comms), these channel/queue names are mostly from
# ``asyncio``'s perspective.
aio_q = from_trio = asyncio.Queue(qsize) # type: ignore
# ITC (inter task comms)
from_trio = asyncio.Queue(qsize) # type: ignore
to_trio, from_aio = trio.open_memory_channel(qsize) # type: ignore
from_aio._err = None
args = tuple(inspect.getfullargspec(func).args)
if getattr(func, '_tractor_steam_function', None):
# the assumption is that the target async routine accepts the
# send channel then it intends to yield more then one return
# value otherwise it would just return ;P
# _treat_as_stream = True
assert qsize > 1
if provide_channels:
@ -190,223 +85,58 @@ def _run_asyncio_task(
aio_task_complete = trio.Event()
aio_err: Optional[BaseException] = None
chan = LinkedTaskChannel(
aio_q, # asyncio.Queue
from_aio, # recv chan
to_trio, # send chan
cancel_scope,
aio_task_complete,
)
async def wait_on_coro_final_result(
to_trio: trio.MemorySendChannel,
coro: Awaitable,
aio_task_complete: trio.Event,
) -> None:
'''
"""
Await ``coro`` and relay result back to ``trio``.
'''
"""
nonlocal aio_err
nonlocal chan
orig = result = id(coro)
try:
result = await coro
except BaseException as aio_err:
log.exception('asyncio task errored')
chan._aio_err = aio_err
raise
else:
if (
result != orig and
aio_err is None and
# in the ``open_channel_from()`` case we don't
# relay through the "return value".
not provide_channels
):
except BaseException as err:
aio_err = err
from_aio._err = aio_err
finally:
aio_task_complete.set()
if result != orig and aio_err is None:
to_trio.send_nowait(result)
finally:
# if the task was spawned using ``open_channel_from()``
# then we close the channels on exit.
if provide_channels:
# only close the sender side which will relay
# a ``trio.EndOfChannel`` to the trio (consumer) side.
to_trio.close()
aio_task_complete.set()
log.runtime(f'`asyncio` task: {task.get_name()} is complete')
# start the asyncio task we submitted from trio
if not inspect.isawaitable(coro):
if inspect.isawaitable(coro):
task = asyncio.create_task(
wait_on_coro_final_result(to_trio, coro, aio_task_complete)
)
# elif inspect.isasyncgen(coro):
# task = asyncio.create_task(consume_asyncgen(to_trio, coro))
else:
raise TypeError(f"No support for invoking {coro}")
task = asyncio.create_task(
wait_on_coro_final_result(
to_trio,
coro,
aio_task_complete
)
)
chan._aio_task = task
def cancel_trio(task: asyncio.Task) -> None:
'''
Cancel the calling ``trio`` task on error.
'''
nonlocal chan
aio_err = chan._aio_err
task_err: Optional[BaseException] = None
# only to avoid ``asyncio`` complaining about uncaptured
# task exceptions
def cancel_trio(task):
"""Cancel the calling ``trio`` task on error.
"""
nonlocal aio_err
try:
task.exception()
except BaseException as terr:
task_err = terr
aio_err = task.exception()
except asyncio.CancelledError as cerr:
aio_err = cerr
if isinstance(terr, CancelledError):
log.cancel(f'`asyncio` task cancelled: {task.get_name()}')
else:
log.exception(f'`asyncio` task: {task.get_name()} errored')
assert type(terr) is type(aio_err), 'Asyncio task error mismatch?'
if aio_err is not None:
# XXX: uhh is this true?
# assert task_err, f'Asyncio task {task.get_name()} discrepancy!?'
# NOTE: currently mem chan closure may act as a form
# of error relay (at least in the ``asyncio.CancelledError``
# case) since we have no way to directly trigger a ``trio``
# task error without creating a nursery to throw one.
# We might want to change this in the future though.
if aio_err:
log.exception(f"asyncio task errorred:\n{aio_err}")
from_aio._err = aio_err
cancel_scope.cancel()
from_aio.close()
if type(aio_err) is CancelledError:
log.cancel("infected task was cancelled")
# TODO: show that the cancellation originated
# from the ``trio`` side? right?
# if cancel_scope.cancelled:
# raise aio_err from err
elif task_err is None:
assert aio_err
aio_err.with_traceback(aio_err.__traceback__)
log.error('infected task errorred')
# XXX: alway cancel the scope on error
# in case the trio task is blocking
# on a checkpoint.
cancel_scope.cancel()
# raise any ``asyncio`` side error.
raise aio_err
task.add_done_callback(cancel_trio)
return chan
@acm
async def translate_aio_errors(
chan: LinkedTaskChannel,
wait_on_aio_task: bool = False,
) -> AsyncIterator[None]:
'''
Error handling context around ``asyncio`` task spawns which
appropriately translates errors and cancels into ``trio`` land.
'''
trio_task = trio.lowlevel.current_task()
aio_err: Optional[BaseException] = None
# TODO: make thisi a channel method?
def maybe_raise_aio_err(
err: Optional[Exception] = None
) -> None:
aio_err = chan._aio_err
if (
aio_err is not None and
type(aio_err) != CancelledError
):
# always raise from any captured asyncio error
if err:
raise aio_err from err
else:
raise aio_err
task = chan._aio_task
assert task
try:
yield
except (
trio.Cancelled,
):
# relay cancel through to called ``asyncio`` task
assert chan._aio_task
chan._aio_task.cancel(
msg=f'the `trio` caller task was cancelled: {trio_task.name}'
)
raise
except (
# NOTE: see the note in the ``cancel_trio()`` asyncio task
# termination callback
trio.ClosedResourceError,
# trio.BrokenResourceError,
):
aio_err = chan._aio_err
if (
task.cancelled() and
type(aio_err) is CancelledError
):
# if an underlying ``asyncio.CancelledError`` triggered this
# channel close, raise our (non-``BaseException``) wrapper
# error: ``AsyncioCancelled`` from that source error.
raise AsyncioCancelled from aio_err
else:
raise
finally:
if (
# NOTE: always cancel the ``asyncio`` task if we've made it
# this far and it's not done.
not task.done() and aio_err
# or the trio side has exited it's surrounding cancel scope
# indicating the lifetime of the ``asyncio``-side task
# should also be terminated.
or chan._trio_exited
):
log.runtime(
f'Cancelling `asyncio`-task: {task.get_name()}'
)
# assert not aio_err, 'WTF how did asyncio do this?!'
task.cancel()
# Required to sync with the far end ``asyncio``-task to ensure
# any error is captured (via monkeypatching the
# ``channel._aio_err``) before calling ``maybe_raise_aio_err()``
# below!
if wait_on_aio_task:
await chan._aio_task_complete.wait()
# NOTE: if any ``asyncio`` error was caught, raise it here inline
# here in the ``trio`` task
maybe_raise_aio_err()
return task, from_aio, to_trio, cancel_scope, aio_task_complete
async def run_task(
@ -414,97 +144,130 @@ async def run_task(
*,
qsize: int = 2**10,
# _treat_as_stream: bool = False,
**kwargs,
) -> Any:
'''
Run an ``asyncio`` async function or generator in a task, return
"""Run an ``asyncio`` async function or generator in a task, return
or stream the result back to ``trio``.
'''
"""
# simple async func
chan = _run_asyncio_task(
try:
task, from_aio, to_trio, cs, _ = _run_asyncio_task(
func,
qsize=1,
**kwargs,
)
with chan._from_aio:
async with translate_aio_errors(
chan,
wait_on_aio_task=True,
):
# return single value that is the output from the
# ``asyncio`` function-as-task. Expect the mem chan api to
# do the job of handling cross-framework cancellations
# / errors via closure and translation in the
# ``translate_aio_errors()`` in the above ctx mngr.
return await chan.receive()
# return single value
with cs:
# naively expect the mem chan api to do the job
# of handling cross-framework cancellations / errors
return await from_aio.receive()
if cs.cancelled_caught:
# always raise from any captured asyncio error
if from_aio._err:
raise from_aio._err
# Do we need this?
except BaseException as err:
aio_err = from_aio._err
if aio_err is not None:
# always raise from any captured asyncio error
raise err from aio_err
else:
raise
# except trio.Cancelled:
# raise
finally:
if not task.done():
task.cancel()
# TODO: explicit api for the streaming case where
# we pull from the mem chan in an async generator?
# This ends up looking more like our ``Portal.open_stream_from()``
# NB: code below is untested.
# async def _start_and_sync_aio_task(
# from_trio,
# to_trio,
# from_aio,
@acm
async def open_channel_from(
target: Callable[..., Any],
target: Callable[[Any, ...], Any],
**kwargs,
) -> AsyncIterator[Any]:
'''
Open an inter-loop linked task channel for streaming between a target
spawned ``asyncio`` task and ``trio``.
'''
chan = _run_asyncio_task(
try:
task, from_aio, to_trio, cs, aio_task_complete = _run_asyncio_task(
target,
qsize=2**8,
provide_channels=True,
**kwargs,
)
async with chan._from_aio:
async with translate_aio_errors(
chan,
wait_on_aio_task=True,
):
# sync to a "started()"-like first delivered value from the
# ``asyncio`` task.
try:
with chan._trio_cs:
first = await chan.receive()
# deliver stream handle upward
yield first, chan
with cs:
# sync to "started()" call.
first = await from_aio.receive()
# stream values upward
async with from_aio:
yield first, from_aio
# await aio_task_complete.wait()
except BaseException as err:
aio_err = from_aio._err
if aio_err is not None:
# always raise from any captured asyncio error
raise err from aio_err
else:
raise
finally:
chan._trio_exited = True
chan._to_trio.close()
if cs.cancelled_caught:
# always raise from any captured asyncio error
if from_aio._err:
raise from_aio._err
if not task.done():
task.cancel()
def run_as_asyncio_guest(
trio_main: Callable,
) -> None:
'''
Entry for an "infected ``asyncio`` actor".
"""Entry for an "infected ``asyncio`` actor".
Entrypoint for a Python process which starts the ``asyncio`` event
loop and runs ``trio`` in guest mode resulting in a system where
``trio`` tasks can control ``asyncio`` tasks whilst maintaining
SC semantics.
Uh, oh. :o
'''
# Uh, oh.
#
# :o
It looks like your event loop has caught a case of the ``trio``s.
# It looks like your event loop has caught a case of the ``trio``s.
:()
# :()
Don't worry, we've heard you'll barely notice. You might hallucinate
a few more propagating errors and feel like your digestion has
slowed but if anything get's too bad your parents will know about
it.
# Don't worry, we've heard you'll barely notice. You might
# hallucinate a few more propagating errors and feel like your
# digestion has slowed but if anything get's too bad your parents
# will know about it.
:)
# :)
"""
# Disable sigint handling in children?
# import signal
# signal.signal(signal.SIGINT, signal.SIG_IGN)
get_console_log('runtime')
async def aio_main(trio_main):
@ -513,20 +276,8 @@ def run_as_asyncio_guest(
def trio_done_callback(main_outcome):
if isinstance(main_outcome, Error):
error = main_outcome.error
trio_done_fut.set_exception(error)
# TODO: explicit asyncio tb?
# traceback.print_exception(error)
# XXX: do we need this?
# actor.cancel_soon()
main_outcome.unwrap()
else:
print(f"trio_main finished: {main_outcome!r}")
trio_done_fut.set_result(main_outcome)
log.runtime(f"trio_main finished: {main_outcome!r}")
# start the infection: run trio on the asyncio loop in "guest mode"
log.info(f"Infecting asyncio process with {trio_main}")
@ -536,8 +287,7 @@ def run_as_asyncio_guest(
run_sync_soon_threadsafe=loop.call_soon_threadsafe,
done_callback=trio_done_callback,
)
# ``.unwrap()`` will raise here on error
return (await trio_done_fut).unwrap()
(await trio_done_fut).unwrap()
# might as well if it's installed.
try:
@ -547,4 +297,4 @@ def run_as_asyncio_guest(
except ImportError:
pass
return asyncio.run(aio_main(trio_main))
asyncio.run(aio_main(trio_main))

View File

@ -1,40 +1,14 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Sugary patterns for trio + tractor designs.
'''
from ._mngrs import (
gather_contexts,
maybe_open_context,
maybe_open_nursery,
)
from ._broadcast import (
broadcast_receiver,
BroadcastReceiver,
Lagged,
)
from ._mngrs import async_enter_all
from ._broadcast import broadcast_receiver, BroadcastReceiver, Lagged
__all__ = [
'gather_contexts',
'async_enter_all',
'broadcast_receiver',
'BroadcastReceiver',
'Lagged',
'maybe_open_context',
'maybe_open_nursery',
]

View File

@ -1,19 +1,3 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
``tokio`` style broadcast channel.
https://docs.rs/tokio/1.11.0/tokio/sync/broadcast/index.html
@ -23,6 +7,7 @@ from __future__ import annotations
from abc import abstractmethod
from collections import deque
from contextlib import asynccontextmanager
from dataclasses import dataclass
from functools import partial
from operator import ne
from typing import Optional, Callable, Awaitable, Any, AsyncIterator, Protocol
@ -32,10 +17,7 @@ import trio
from trio._core._run import Task
from trio.abc import ReceiveChannel
from trio.lowlevel import current_task
from msgspec import Struct
from tractor.log import get_logger
log = get_logger(__name__)
# A regular invariant generic type
T = TypeVar("T")
@ -49,9 +31,8 @@ class AsyncReceiver(
Protocol,
Generic[ReceiveType],
):
'''
An async receivable duck-type that quacks much like trio's
``trio.abc.ReceiveChannel``.
'''An async receivable duck-type that quacks much like trio's
``trio.abc.ReceieveChannel``.
'''
@abstractmethod
@ -81,16 +62,15 @@ class AsyncReceiver(
class Lagged(trio.TooSlowError):
'''
Subscribed consumer task was too slow and was overrun
'''Subscribed consumer task was too slow and was overrun
by the fastest consumer-producer pair.
'''
class BroadcastState(Struct):
'''
Common state to all receivers of a broadcast.
@dataclass
class BroadcastState:
'''Common state to all receivers of a broadcast.
'''
queue: deque
@ -104,47 +84,9 @@ class BroadcastState(Struct):
# on a newly produced value from the sender.
recv_ready: Optional[tuple[int, trio.Event]] = None
# if a ``trio.EndOfChannel`` is received on any
# consumer all consumers should be placed in this state
# such that the group is notified of the end-of-broadcast.
# For now, this is solely for testing/debugging purposes.
eoc: bool = False
# If the broadcaster was cancelled, we might as well track it
cancelled: dict[int, Task] = {}
def statistics(self) -> dict[str, Any]:
'''
Return broadcast receiver group "statistics" like many of
``trio``'s internal task-sync primitives.
'''
key: int | None
ev: trio.Event | None
subs = self.subs
if self.recv_ready is not None:
key, ev = self.recv_ready
else:
key = ev = None
qlens: dict[int, int] = {}
for tid, sz in subs.items():
qlens[tid] = sz if sz != -1 else 0
return {
'open_consumers': len(subs),
'queued_len_by_task': qlens,
'max_buffer_size': self.maxlen,
'tasks_waiting': ev.statistics().tasks_waiting if ev else 0,
'tasks_cancelled': self.cancelled,
'next_value_receiver_id': key,
}
class BroadcastReceiver(ReceiveChannel):
'''
A memory receive channel broadcaster which is non-lossy for the
'''A memory receive channel broadcaster which is non-lossy for the
fastest consumer.
Additional consumer tasks can receive all produced values by registering
@ -157,40 +99,23 @@ class BroadcastReceiver(ReceiveChannel):
rx_chan: AsyncReceiver,
state: BroadcastState,
receive_afunc: Optional[Callable[[], Awaitable[Any]]] = None,
raise_on_lag: bool = True,
) -> None:
# register the original underlying (clone)
self.key = id(self)
self._state = state
# each consumer has an int count which indicates
# which index contains the next value that the task has not yet
# consumed and thus should read. In the "up-to-date" case the
# consumer task must wait for a new value from the underlying
# receiver and we use ``-1`` as the sentinel for this state.
state.subs[self.key] = -1
# underlying for this receiver
self._rx = rx_chan
self._recv = receive_afunc or rx_chan.receive
self._closed: bool = False
self._raise_on_lag = raise_on_lag
def receive_nowait(
self,
_key: int | None = None,
_state: BroadcastState | None = None,
async def receive(self) -> ReceiveType:
) -> Any:
'''
Sync version of `.receive()` which does all the low level work
of receiving from the underlying/wrapped receive channel.
'''
key = _key or self.key
state = _state or self._state
key = self.key
state = self._state
# TODO: ideally we can make some way to "lock out" the
# underlying receive channel in some way such that if some task
@ -223,47 +148,32 @@ class BroadcastReceiver(ReceiveChannel):
# return this value."
# https://docs.rs/tokio/1.11.0/tokio/sync/broadcast/index.html#lagging
mxln = state.maxlen
lost = seq - mxln
# decrement to the last value and expect
# consumer to either handle the ``Lagged`` and come back
# or bail out on its own (thus un-subscribing)
state.subs[key] = mxln - 1
state.subs[key] = state.maxlen - 1
# this task was overrun by the producer side
task: Task = current_task()
msg = f'Task `{task.name}` overrun and dropped `{lost}` values'
if self._raise_on_lag:
raise Lagged(msg)
else:
log.warning(msg)
return self.receive_nowait(_key, _state)
raise Lagged(f'Task {task.name} was overrun')
state.subs[key] -= 1
return value
raise trio.WouldBlock
async def _receive_from_underlying(
self,
key: int,
state: BroadcastState,
) -> ReceiveType:
# current task already has the latest value **and** is the
# first task to begin waiting for a new one
if state.recv_ready is None:
if self._closed:
raise trio.ClosedResourceError
event = trio.Event()
assert state.recv_ready is None
state.recv_ready = key, event
try:
# if we're cancelled here it should be
# fine to bail without affecting any other consumers
# right?
try:
value = await self._recv()
# items with lower indices are "newer"
@ -281,6 +191,7 @@ class BroadcastReceiver(ReceiveChannel):
# already retreived the last value
# XXX: which of these impls is fastest?
# subs = state.subs.copy()
# subs.pop(key)
@ -295,108 +206,63 @@ class BroadcastReceiver(ReceiveChannel):
event.set()
return value
except trio.EndOfChannel:
# if any one consumer gets an EOC from the underlying
# receiver we need to unblock and send that signal to
# all other consumers.
self._state.eoc = True
if event.statistics().tasks_waiting:
event.set()
raise
except (
trio.Cancelled,
):
except trio.Cancelled:
# handle cancelled specially otherwise sibling
# consumers will be awoken with a sequence of -1
# and will potentially try to rewait the underlying
# receiver instead of just cancelling immediately.
self._state.cancelled[key] = current_task()
# state.recv_ready = trio.Cancelled
if event.statistics().tasks_waiting:
event.set()
raise
finally:
# Reset receiver waiter task event for next blocking condition.
# this MUST be reset even if the above ``.recv()`` call
# was cancelled to avoid the next consumer from blocking on
# an event that won't be set!
state.recv_ready = None
async def receive(self) -> ReceiveType:
key = self.key
state = self._state
try:
return self.receive_nowait(
_key=key,
_state=state,
)
except trio.WouldBlock:
pass
# current task already has the latest value **and** is the
# first task to begin waiting for a new one so we begin blocking
# until rescheduled with the a new value from the underlying.
if state.recv_ready is None:
return await self._receive_from_underlying(key, state)
# This task is all caught up and ready to receive the latest
# value, so queue/schedule it to be woken on the next internal
# event.
# value, so queue sched it on the internal event.
else:
while state.recv_ready is not None:
# seq = state.subs[key]
# assert seq == -1 # sanity
seq = state.subs[key]
assert seq == -1 # sanity
_, ev = state.recv_ready
await ev.wait()
try:
return self.receive_nowait(
_key=key,
_state=state,
)
except trio.WouldBlock:
if self._closed:
raise trio.ClosedResourceError
subs = state.subs
if (
len(subs) == 1
and key in subs
# or cancelled
):
# XXX: we are the last and only user of this BR so
# likely it makes sense to unwind back to the
# underlying?
# import tractor
# await tractor.breakpoint()
log.warning(
f'Only one sub left for {self}?\n'
'We can probably unwind from breceiver?'
)
# NOTE: if we ever would like the behaviour where if the
# first task to recv on the underlying is cancelled but it
# still DOES trigger the ``.recv_ready``, event we'll likely need
# this logic:
if seq > -1:
# stuff from above..
seq = state.subs[key]
value = state.queue[seq]
state.subs[key] -= 1
return value
elif seq == -1:
# XXX: In the case where the first task to allocate the
# ``.recv_ready`` event is cancelled we will be woken
# with a non-incremented sequence number (the ``-1``
# sentinel) and thus will read the oldest value if we
# use that. Instead we need to detect if we have not
# been incremented and then receive again.
# return await self.receive()
# ``.recv_ready`` event is cancelled we will be woken with
# a non-incremented sequence number and thus will read the
# oldest value if we use that. Instead we need to detect if
# we have not been incremented and then receive again.
return await self.receive()
return await self._receive_from_underlying(key, state)
else:
raise ValueError(f'Invalid sequence {seq}!?')
@asynccontextmanager
async def subscribe(
self,
raise_on_lag: bool = True,
) -> AsyncIterator[BroadcastReceiver]:
'''
Subscribe for values from this broadcast receiver.
'''Subscribe for values from this broadcast receiver.
Returns a new ``BroadCastReceiver`` which is registered for and
pulls data from a clone of the original
``trio.abc.ReceiveChannel`` provided at creation.
pulls data from a clone of the original ``trio.abc.ReceiveChannel``
provided at creation.
'''
if self._closed:
@ -407,7 +273,6 @@ class BroadcastReceiver(ReceiveChannel):
rx_chan=self._rx,
state=state,
receive_afunc=self._recv,
raise_on_lag=raise_on_lag,
)
# assert clone in state.subs
assert br.key in state.subs
@ -420,23 +285,14 @@ class BroadcastReceiver(ReceiveChannel):
async def aclose(
self,
) -> None:
'''
Close this receiver without affecting other consumers.
'''
if self._closed:
return
# if there are sleeping consumers wake
# them on closure.
rr = self._state.recv_ready
if rr:
_, event = rr
event.set()
# XXX: leaving it like this consumers can still get values
# up to the last received that still reside in the queue.
self._state.subs.pop(self.key)
self._closed = True
@ -444,8 +300,7 @@ def broadcast_receiver(
recv_chan: AsyncReceiver,
max_buffer_size: int,
receive_afunc: Optional[Callable[[], Awaitable[Any]]] = None,
raise_on_lag: bool = True,
**kwargs,
) -> BroadcastReceiver:
@ -456,6 +311,5 @@ def broadcast_receiver(
maxlen=max_buffer_size,
subs={},
),
receive_afunc=receive_afunc,
raise_on_lag=raise_on_lag,
**kwargs,
)

View File

@ -1,278 +1,64 @@
# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Async context manager primitives with hard ``trio``-aware semantics
'''
from typing import AsyncContextManager
from typing import TypeVar
from contextlib import asynccontextmanager as acm
import inspect
from typing import (
Any,
AsyncContextManager,
AsyncGenerator,
AsyncIterator,
Callable,
Hashable,
Optional,
Sequence,
TypeVar,
)
import trio
from trio_typing import TaskStatus
from .._state import current_actor
from ..log import get_logger
log = get_logger(__name__)
# A regular invariant generic type
T = TypeVar("T")
@acm
async def maybe_open_nursery(
nursery: trio.Nursery | None = None,
shield: bool = False,
) -> AsyncGenerator[trio.Nursery, Any]:
'''
Create a new nursery if None provided.
Blocks on exit as expected if no input nursery is provided.
'''
if nursery is not None:
yield nursery
else:
async with trio.open_nursery() as nursery:
nursery.cancel_scope.shield = shield
yield nursery
async def _enter_and_wait(
async def _enter_and_sleep(
mngr: AsyncContextManager[T],
unwrapped: dict[int, T],
to_yield: dict[int, T],
all_entered: trio.Event,
parent_exit: trio.Event,
# task_status: TaskStatus[T] = trio.TASK_STATUS_IGNORED,
) -> None:
'''
Open the async context manager deliver it's value
) -> T:
'''Open the async context manager deliver it's value
to this task's spawner and sleep until cancelled.
'''
async with mngr as value:
unwrapped[id(mngr)] = value
to_yield[id(mngr)] = value
if all(unwrapped.values()):
if all(to_yield.values()):
all_entered.set()
await parent_exit.wait()
# sleep until cancelled
await trio.sleep_forever()
@acm
async def gather_contexts(
async def async_enter_all(
mngrs: Sequence[AsyncContextManager[T]],
*mngrs: tuple[AsyncContextManager[T]],
) -> AsyncGenerator[tuple[Optional[T], ...], None]:
'''
Concurrently enter a sequence of async context managers, each in
a separate ``trio`` task and deliver the unwrapped values in the
same order once all managers have entered. On exit all contexts are
subsequently and concurrently exited.
) -> tuple[T]:
This function is somewhat similar to common usage of
``contextlib.AsyncExitStack.enter_async_context()`` (in a loop) in
combo with ``asyncio.gather()`` except the managers are concurrently
entered and exited, and cancellation just works.
'''
unwrapped: dict[int, Optional[T]] = {}.fromkeys(id(mngr) for mngr in mngrs)
to_yield = {}.fromkeys(id(mngr) for mngr in mngrs)
all_entered = trio.Event()
parent_exit = trio.Event()
# XXX: ensure greedy sequence of manager instances
# since a lazy inline generator doesn't seem to work
# with `async with` syntax.
mngrs = list(mngrs)
if not mngrs:
raise ValueError(
'input mngrs is empty?\n'
'Did try to use inline generator syntax?'
)
async with trio.open_nursery() as n:
for mngr in mngrs:
n.start_soon(
_enter_and_wait,
_enter_and_sleep,
mngr,
unwrapped,
to_yield,
all_entered,
parent_exit,
)
# deliver control once all managers have started up
await all_entered.wait()
yield tuple(to_yield.values())
try:
yield tuple(unwrapped.values())
finally:
# NOTE: this is ABSOLUTELY REQUIRED to avoid
# the following wacky bug:
# <tractorbugurlhere>
parent_exit.set()
# Per actor task caching helpers.
# Further potential examples of interest:
# https://gist.github.com/njsmith/cf6fc0a97f53865f2c671659c88c1798#file-cache-py-L8
class _Cache:
'''
Globally (actor-processs scoped) cached, task access to
a kept-alive-while-in-use async resource.
'''
service_n: Optional[trio.Nursery] = None
locks: dict[Hashable, trio.Lock] = {}
users: int = 0
values: dict[Any, Any] = {}
resources: dict[
Hashable,
tuple[trio.Nursery, trio.Event]
] = {}
# nurseries: dict[int, trio.Nursery] = {}
no_more_users: Optional[trio.Event] = None
@classmethod
async def run_ctx(
cls,
mng,
ctx_key: tuple,
task_status: TaskStatus[T] = trio.TASK_STATUS_IGNORED,
) -> None:
async with mng as value:
_, no_more_users = cls.resources[ctx_key]
cls.values[ctx_key] = value
task_status.started(value)
try:
await no_more_users.wait()
finally:
# discard nursery ref so it won't be re-used (an error)?
value = cls.values.pop(ctx_key)
cls.resources.pop(ctx_key)
@acm
async def maybe_open_context(
acm_func: Callable[..., AsyncContextManager[T]],
# XXX: used as cache key after conversion to tuple
# and all embedded values must also be hashable
kwargs: dict = {},
key: Hashable | Callable[..., Hashable] = None,
) -> AsyncIterator[tuple[bool, T]]:
'''
Maybe open a context manager if there is not already a _Cached
version for the provided ``key`` for *this* actor. Return the
_Cached instance on a _Cache hit.
'''
fid = id(acm_func)
if inspect.isfunction(key):
ctx_key = (fid, key(**kwargs))
else:
ctx_key = (fid, key or tuple(kwargs.items()))
# yielded output
yielded: Any = None
# Lock resource acquisition around task racing / ``trio``'s
# scheduler protocol.
# NOTE: the lock is target context manager func specific in order
# to allow re-entrant use cases where one `maybe_open_context()`
# wrapped factor may want to call into another.
lock = _Cache.locks.setdefault(fid, trio.Lock())
await lock.acquire()
# XXX: one singleton nursery per actor and we want to
# have it not be closed until all consumers have exited (which is
# currently difficult to implement any other way besides using our
# pre-allocated runtime instance..)
service_n: trio.Nursery = current_actor()._service_n
# TODO: is there any way to allocate
# a 'stays-open-till-last-task-finshed nursery?
# service_n: trio.Nursery
# async with maybe_open_nursery(_Cache.service_n) as service_n:
# _Cache.service_n = service_n
try:
# **critical section** that should prevent other tasks from
# checking the _Cache until complete otherwise the scheduler
# may switch and by accident we create more then one resource.
yielded = _Cache.values[ctx_key]
except KeyError:
log.info(f'Allocating new {acm_func} for {ctx_key}')
mngr = acm_func(**kwargs)
resources = _Cache.resources
assert not resources.get(ctx_key), f'Resource exists? {ctx_key}'
resources[ctx_key] = (service_n, trio.Event())
# sync up to the mngr's yielded value
yielded = await service_n.start(
_Cache.run_ctx,
mngr,
ctx_key,
)
_Cache.users += 1
lock.release()
yield False, yielded
else:
log.info(f'Reusing _Cached resource for {ctx_key}')
_Cache.users += 1
lock.release()
yield True, yielded
finally:
_Cache.users -= 1
if yielded is not None:
# if no more consumers, teardown the client
if _Cache.users <= 0:
log.info(f'De-allocating resource for {ctx_key}')
# XXX: if we're cancelled we the entry may have never
# been entered since the nursery task was killed.
# _, no_more_users = _Cache.resources[ctx_key]
entry = _Cache.resources.get(ctx_key)
if entry:
_, no_more_users = entry
no_more_users.set()
_Cache.locks.pop(fid)
# tear down all sleeper tasks thus triggering individual
# mngr ``__aexit__()``s.
n.cancel_scope.cancel()