If the root calls `trio.Process.kill()` on immediate child proc teardown
when the child is using pdb, we can get stdstreams clobbering that
results in a pdb++ repl where the user can't see what's been typed. Not
killing such children on cancellation / error seems to resolve this
issue whilst still giving reliable termination. For now, code that
special path until a time it becomes a problem for ensuring zombie
reaps.
Clearly this wasn't developed against a task that spawned just an async
func in `asyncio`.. Fix all that and remove a bunch of unnecessary func
layers. Add provisional support for the target receiving the `to_trio`
and `from_trio` channels and for the @tractor.stream marker.
The function is useful if you want to run the "main process" under
`asyncio`. Until `trio` core wraps this better we'll keep our own copy
in the interim (there's a new "inside-out-guest" mode almost on
mainline so hang tight).
This should mostly maintain top level SC principles for any task spawned
using `tractor.to_asyncio.run()`. When the `asyncio` task completes make
sure to cancel the pertaining `trio` cancel scope and raise any error
that may have resulted.
Resolves#120
If the root calls `trio.Process.kill()` on immediate child proc teardown
when the child is using pdb, we can get stdstreams clobbering that
results in a pdb++ repl where the user can't see what's been typed. Not
killing such children on cancellation / error seems to resolve this
issue whilst still giving reliable termination. For now, code that
special path until a time it becomes a problem for ensuring zombie
reaps.
A context is the natural fit (vs. a receive stream) for locking the root
proc's tty usage via it's `.started()` sync point. Simplify the
`_breakpoin()` routine to be a simple async func instead of all this
"returning a coroutine" stuff from before we decided that
`tractor.breakpoint()` must be async. Use `runtime` level for locking
logging making it easier to trace.