The method now returns a `bool` which flags whether the transport died
to the caller and allows for reporting a disconnect in the
channel-transport handler task. This is something a user will normally
want to know about on the caller side especially after seeing
a traceback from the peer (if in tree) on console.
There's no point in sending a cancel message to the remote linked task
and especially no reason to block waiting on a result from that task if
the transport layer is detected to be disconnected. We expect that the
transport shouldn't go down at the layer of the message loop
(reconnection logic should be handled in the transport layer itself) so
if we detect the channel is not connected we don't bother requesting
cancels nor waiting on a final result message.
Why?
- if the connection goes down in error the caller side won't have a way
to know "how long" it should block to wait for a cancel ack or result
and causes a potential hang that may require an additional ctrl-c from
the user especially if using the debugger or if the traceback is not
seen on console.
- obviously there's no point in waiting for messages when there's no
transport to deliver them XD
Further, add some more detailed cancel logging detailing the task and
actor ids.
There's a bug that's triggered in the stdlib without latest `pdb++`
installed; add a note for that.
Further inside `wait_for_parent_stdin_hijack()` don't `.started()` until
the interactor stream has been opened to avoid races when debugging this
`._debug.py` module (at the least) since we usually don't want the
spawning (parent) task to resume until we know for sure the tty lock has
been acquired. Also, drop the random checkpoint we had inside
`_breakpoint()`, not sure it was actually adding anything useful since
we're (mostly) carefully shielded throughout this func.
None of it worked (you still will see `.__exit__()` frames on debugger
entry - you'd think this would have been solved by now but, shrug) so
instead wrap the debugger entry-point in a `try:` and put the SIGINT
handler restoration inside `MultiActorPdb` teardown hooks.
This seems to restore the UX as it was prior but with also giving the
desired SIGINT override handler behaviour.
Using either of `@pdb.hideframe` or `__tracebackhide__` on stdlib
methods doesn't seem to work either.. This all seems to have something
to do with async generator usage I think ?
This gets very close to avoiding any possible hangs to do with tty
locking and SIGINT handling minus a special case that will be detailed
below.
Summary of implementation changes:
- convert `_mk_pdb()` -> `with _open_pdb() as pdb:` which implicitly
handles the `bdb.BdbQuit` case such that debugger teardown hooks are
always called.
- rename the handler to `shield_sigint()` and handle a variety of new
cases:
* the root is in debug but hasn't been cancelled -> call
`Actor.cancel_soon()`
* the root is in debug but *has* been called (`Actor.cancel_soon()`
already called) -> raise KBI
* a child is in debug *and* has a task locking the debugger -> ignore
SIGINT in child *and* the root actor.
- if the debugger instance is provided to the handler at acquire time,
on SIGINT handling completion re-print the last pdb++ REPL output so
that the user realizes they are still actively in debug.
- ignore the unlock case where a race condition of "no task" holding the
lock causes the `RuntimeError` normally associated with the "wrong
task" doing so (not sure if this is a `trio` bug?).
- change debug logs to runtime level.
Unhandled case(s):
- a child is maybe in debug mode but does not itself have any task using
the debugger.
* ToDo: we need a way to decide what to do with
"intermediate" child actors who themselves either are not in
`debug_mode=True` but have children who *are* such that a SIGINT
won't cause cancellation of that child-as-parent-of-another-child
**iff** any of their children are in in debug mode.
This fixes an previously undetected bug where if an
`.open_channel_from()` spawned task errored the error would not be
propagated to the `trio` side and instead would fail silently with
a console log error. What was most odd is that it only seems easy to
trigger when you put a slight task sleep before the error is raised
(:eyeroll:). This patch adds a few things to address this and just in
general improve iter-task lifetime syncing:
- add `LinkedTaskChannel._trio_exited: bool` a flag set from the `trio`
side when the channel block exits.
- add a `wait_on_aio_task: bool` flag to `translate_aio_errors` which
toggles whether to wait the `asyncio` task termination event on exit.
- cancel the `asyncio` task if the trio side has ended, when
`._trio_exited == True`.
- always close the `trio` mem channel when the task exits such that
the `asyncio` side can error on any next `.send()` call.
Sometimes it's handy to just have a non-`Portal` yielding way
to figure out if a "service" actor is up, so add this discovery
helper for that. We'll prolly just leave it undocumented for
now until we figure out a longer-term/better discovery system.
When an `asyncio` side task errors or is cancelled we now explicitly
report the traceback and task name if possible as well as the source
reason for the error (some come from the `trio` side).
Further, properly set any `trio` side exception (after unwrapping it
from the `outcome.Error`) on the future that runs the `trio` guest run.
Python 3.9's new object resolver + a `str` is much simpler then mucking
with tuples (and easier to serialize). Include a `.to_tuple()` formatter
since we still are passing the module namespace and function name
separately inside the runtime's message format but in theory we might be
able to simplify this depending on how we would change the support for
`enable_modules:list[str]` in the spawn API.
Thanks to @Fuyukai for pointing `resolve_name()` which I didn't know
about before!
Adjust the `soft_wait()` strategy to avoid sending needless cancel
requests if it is known that a child process is already terminated or
does so before the cancel request times out. This should be no slower
and should avoid needless waits on either closure-in-progress or already
closed channels.
Basic strategy is,
- request child actor to cancel
- if process termination is detected, cancel the cancel
- if the process is still alive after a cancel request timeout warn the
user and yield back to the hard reap handling
Better encapsulate all the mem-chan, Queue, sync-primitives inside our
linked task channel in order to avoid `mypy`'s complaints about monkey
patching. This also sets footing for adding an `asyncio`-side channel
API that can be used more like this `trio`-side API.
For whatever reason `trio` seems to be swallowing this exception when
raised in the `trio` task so instead wrap it in our own non-base
exception type: `AsyncioCancelled` and raise that when the `asyncio`
task cancels itself internally using `raise <err> from <src_err>` style.
Further don't bother cancelling the `trio` task (via cancel scope)
since we we can just use the recv mem chan closure error as a signal
and explicitly lookup any set asyncio error.
Wraps the pairs of underlying `trio` mem chans and the `asyncio.Queue`
with this new composite which will be delivered from `open_channel_from()`.
This allows for both sending and receiving values from the `asyncio`
task (2 way msg passing) as well controls for cancelling or waiting on
the task.
Factor `asyncio` translation and re-raising logic into a new closure
which is run on both `trio` side error handling as well as on normal
termination to avoid missing `asyncio` errors even when `trio` task
cancellation is handled first.
Only close the `trio` mem chans on `trio` task termination *iff*
the task was spawned using `open_channel_from()`:
- on `open_channel_from()` exit, mem chan closure is the desired semantic
- on `run_task()` we normally only return a single value or error and
if the channel is closed before the error is raised we may propagate
a `trio.EndOfChannel` instead of the desired underlying `asyncio`
task's error
Pull the common `asyncio` -> `trio` error translation logic into
a common context manager and don't expect a final result to be captured
when using `open_channel_from()` since it's a manager interface and it
would be clunky to try and deliver some "final result" after exit.
Close the mem chan before cancelling the `trio` task in order to ensure
we retrieve whatever error is shuttled from `asyncio` before the channel
read is potentially cancelled (previously a race?).
Handle `asyncio.CancelledError` specially such that we raise it directly
(instead of `raise aio_cancelled from other_err`) since it *is* the
source error in the case where the cancellation is `asyncio` internal.
Clearly this wasn't developed against a task that spawned just an async
func in `asyncio`.. Fix all that and remove a bunch of unnecessary func
layers. Add provisional support for the target receiving the `to_trio`
and `from_trio` channels and for the @tractor.stream marker.
This should mostly maintain top level SC principles for any task spawned
using `tractor.to_asyncio.run()`. When the `asyncio` task completes make
sure to cancel the pertaining `trio` cancel scope and raise any error
that may have resulted. This interface uses `trio`'s "guest-mode" to run
`asyncio` loop using a special entrypoint which is handed to Python
during process spawn.
If the one side of an inter-actor context cancels the other then that
side should always expect back a `ContextCancelled` message. However we
should not set this error in this case (where the cancel request was
sent and a `ContextCancelled` msg was received back) since it may
override some other error that caused the cancellation request to be
sent out in the first place. As an example when a context opens another
context to a peer and some error happens which causes the second peer
context to be cancelled but we want to propagate the original error.
Fixes the issue found in https://github.com/pikers/piker/issues/244