b1fd8b2ec3
As detailed in the surrounding notes, it's pretty advantageous to always have the child context task ensure the first msg it relays back is msg-type checked against the current spec and thus `MsgCodec`. Implement the check via a simple codec-roundtrip of the `Started` msg such that the `.pld` payload is always validated before transit. This ensures the child will fail early and notify the parent before any streaming takes place (i.e. the "nasty" dialog protocol phase). The main motivation here is to avoid inter-actor task syncing bugs that are hard(er) to recover from and/or such as if an invalid typed msg is sent to the parent, who then ignores it (depending on config), and then the child thinks the parent is in some presumed state while the parent is still thinking a first msg has yet to arrive. Doing the stringent check on the sender side (i.e. the child is sending the "first" application msg via `.started()`) avoids/sidesteps dealing with such syncing/coordinated-state problems by keeping the entire IPC dialog in a "cheap" or "control" style transaction up until a stream is opened. Iow, the parent task's `.open_context()` block entry can't occur until the child side is definitely (as much as is possible with IPC msg type checking) in a correct state spec wise. During any streaming phase in the dialog the msg-type-checking is NOT done for performance (the "nasty" protocol phase) and instead any type errors are relayed back from the receiving side. I'm still unsure whether to take the same approach on the `Return` msg, since at that point erroring early doesn't benefit the parent task if/when a msg-type error occurs? Definitely more to ponder and tinker out here.. Impl notes: - a gotcha with the roundtrip-codec-ed msg is that it often won't match the input `value` bc in the `msgpack` case many native python sequence/collection types will map to a common array type due to the surjection that `msgpack`'s type-sys imposes. - so we can't assert that `started == rt_started` but it may be useful to at least report the diff of the type-reduced payload so that the caller can at least be notified how the input `value` might be better type-casted prior to call, for ex. pre-casting to `list`s. - added a `._strict_started: bool` that could provide the stringent checking if desired in the future. - on any validation error raise our `MsgTypeError` from it. - ALSO change over the lingering `.send_yield()` deprecated meth body to use a `Yield()`. |
||
---|---|---|
.github/workflows | ||
docs | ||
examples | ||
nooz | ||
tests | ||
tractor | ||
.gitignore | ||
LICENSE | ||
MANIFEST.in | ||
NEWS.rst | ||
mypy.ini | ||
pyproject.toml | ||
requirements-docs.txt | ||
requirements-test.txt | ||
setup.py |
docs/README.rst
tractor
: next-gen Python parallelism
tractor
is a structured concurrent, (optionally distributed) multi-processing runtime built on trio.
Fundamentally, tractor
gives you parallelism via trio
-"actors": independent Python processes (aka non-shared-memory threads) which maintain structured concurrency (SC) end-to-end inside a supervision tree.
Cross-process (and thus cross-host) SC is accomplished through the combined use of our "actor nurseries" and an "SC-transitive IPC protocol" constructed on top of multiple Pythons each running a trio
scheduled runtime - a call to trio.run()
.
We believe the system adheres to the 3 axioms of an "actor model" but likely does not look like what you probably think an "actor model" looks like, and that's intentional.
Where do i start!?
The first step to grok tractor
is to get an intermediate knowledge of trio
and structured concurrency B)
Some great places to start are, - the seminal blog post - obviously the trio docs - wikipedia's nascent SC page - the fancy diagrams @ libdill-docs
Features
- It's just a
trio
API - Infinitely nesteable process trees
- Builtin IPC streaming APIs with task fan-out broadcasting
- A "native" multi-core debugger REPL using pdbp (a fork & fix of pdb++ thanks to @mdmintz!)
- Support for a swappable, OS specific, process spawning layer
- A modular transport stack, allowing for custom serialization (eg. with msgspec), communications protocols, and environment specific IPC primitives
- Support for spawning process-level-SC, inter-loop one-to-one-task oriented
asyncio
actors via "infectedasyncio
" mode - structured chadcurrency from the ground up
Run a func in a process
Use trio
's style of focussing on tasks as functions:
"""
Run with a process monitor from a terminal using::
$TERM -e watch -n 0.1 "pstree -a $$" \
& python examples/parallelism/single_func.py \
&& kill $!
"""
import os
import tractor
import trio
async def burn_cpu():
= os.getpid()
pid
# burn a core @ ~ 50kHz
for _ in range(50000):
await trio.sleep(1/50000/50)
return os.getpid()
async def main():
async with tractor.open_nursery() as n:
= await n.run_in_actor(burn_cpu)
portal
# burn rubber in the parent too
await burn_cpu()
# wait on result from target function
= await portal.result()
pid
# end of nursery block
print(f"Collected subproc {pid}")
if __name__ == '__main__':
trio.run(main)
This runs burn_cpu()
in a new process and reaps it on completion of the nursery block.
If you only need to run a sync function and retreive a single result, you might want to check out trio-parallel.
Zombie safe: self-destruct a process tree
tractor
tries to protect you from zombies, no matter what.
"""
Run with a process monitor from a terminal using::
$TERM -e watch -n 0.1 "pstree -a $$" \
& python examples/parallelism/we_are_processes.py \
&& kill $!
"""
from multiprocessing import cpu_count
import os
import tractor
import trio
async def target():
print(
f"Yo, i'm '{tractor.current_actor().name}' "
f"running in pid {os.getpid()}"
)
await trio.sleep_forever()
async def main():
async with tractor.open_nursery() as n:
for i in range(cpu_count()):
await n.run_in_actor(target, name=f'worker_{i}')
print('This process tree will self-destruct in 1 sec...')
await trio.sleep(1)
# raise an error in root actor/process and trigger
# reaping of all minions
raise Exception('Self Destructed')
if __name__ == '__main__':
try:
trio.run(main)except Exception:
print('Zombies Contained')
If you can create zombie child processes (without using a system signal) it is a bug.
"Native" multi-process debugging
Using the magic of pdbp and our internal IPC, we've been able to create a native feeling debugging experience for any (sub-)process in your tractor
tree.
from os import getpid
import tractor
import trio
async def breakpoint_forever():
"Indefinitely re-enter debugger in child actor."
while True:
yield 'yo'
await tractor.breakpoint()
async def name_error():
"Raise a ``NameError``"
getattr(doggypants)
async def main():
"""Test breakpoint in a streaming actor.
"""
async with tractor.open_nursery(
=True,
debug_mode='error',
loglevelas n:
)
= await n.start_actor('bp_forever', enable_modules=[__name__])
p0 = await n.start_actor('name_error', enable_modules=[__name__])
p1
# retreive results
= await p0.run(breakpoint_forever)
stream await p1.run(name_error)
if __name__ == '__main__':
trio.run(main)
You can run this with:
>>> python examples/debugging/multi_daemon_subactors.py
And, yes, there's a built-in crash handling mode B)
We're hoping to add a respawn-from-repl system soon!
SC compatible bi-directional streaming
Yes, you saw it here first; we provide 2-way streams with reliable, transitive setup/teardown semantics.
Our nascent api is remniscent of trio.Nursery.start()
style invocation:
import trio
import tractor
@tractor.context
async def simple_rpc(
ctx: tractor.Context,int,
data:
-> None:
) '''Test a small ping-pong 2-way streaming server.
'''
# signal to parent that we're up much like
# ``trio_typing.TaskStatus.started()``
await ctx.started(data + 1)
async with ctx.open_stream() as stream:
= 0
count async for msg in stream:
assert msg == 'ping'
await stream.send('pong')
+= 1
count
else:
assert count == 10
async def main() -> None:
async with tractor.open_nursery() as n:
= await n.start_actor(
portal 'rpc_server',
=[__name__],
enable_modules
)
# XXX: this syntax requires py3.9
async with (
portal.open_context(
simple_rpc,=10,
dataas (ctx, sent),
)
as stream,
ctx.open_stream()
):
assert sent == 11
= 0
count # receive msgs using async for style
await stream.send('ping')
async for msg in stream:
assert msg == 'pong'
await stream.send('ping')
+= 1
count
if count >= 9:
break
# explicitly teardown the daemon-actor
await portal.cancel_actor()
if __name__ == '__main__':
trio.run(main)
See original proposal and discussion in #53 as well as follow up improvements in #223 that we'd love to hear your thoughts on!
Worker poolz are easy peasy
The initial ask from most new users is "how do I make a worker pool thing?".
tractor
is built to handle any SC (structured concurrent) process tree you can imagine; a "worker pool" pattern is a trivial special case.
We have a full worker pool re-implementation of the std-lib's concurrent.futures.ProcessPoolExecutor
example for reference.
You can run it like so (from this dir) to see the process tree in real time:
$TERM -e watch -n 0.1 "pstree -a $$" \
& python examples/parallelism/concurrent_actors_primes.py \
&& kill $!
This uses no extra threads, fancy semaphores or futures; all we need is tractor
's IPC!
"Infected asyncio
" mode
Have a bunch of asyncio
code you want to force to be SC at the process level?
Check out our experimental system for guest-mode controlled asyncio
actors:
import asyncio
from statistics import mean
import time
import trio
import tractor
async def aio_echo_server(
to_trio: trio.MemorySendChannel,
from_trio: asyncio.Queue,-> None:
)
# a first message must be sent **from** this ``asyncio``
# task or the ``trio`` side will never unblock from
# ``tractor.to_asyncio.open_channel_from():``
'start')
to_trio.send_nowait(
# XXX: this uses an ``from_trio: asyncio.Queue`` currently but we
# should probably offer something better.
while True:
# echo the msg back
await from_trio.get())
to_trio.send_nowait(await asyncio.sleep(0)
@tractor.context
async def trio_to_aio_echo_server(
ctx: tractor.Context,
):# this will block until the ``asyncio`` task sends a "first"
# message.
async with tractor.to_asyncio.open_channel_from(
aio_echo_server,as (first, chan):
)
assert first == 'start'
await ctx.started(first)
async with ctx.open_stream() as stream:
async for msg in stream:
await chan.send(msg)
= await chan.receive()
out # echo back to parent actor-task
await stream.send(out)
async def main():
async with tractor.open_nursery() as n:
= await n.start_actor(
p 'aio_server',
=[__name__],
enable_modules=True,
infect_asyncio
)async with p.open_context(
trio_to_aio_echo_server,as (ctx, first):
)
assert first == 'start'
= 0
count async with ctx.open_stream() as stream:
= []
delays = time.time()
send
await stream.send(count)
async for msg in stream:
= time.time()
recv - send)
delays.append(recv assert msg == count
+= 1
count = time.time()
send await stream.send(count)
if count >= 1e3:
break
print(f'mean round trip rate (Hz): {1/mean(delays)}')
await p.cancel_actor()
if __name__ == '__main__':
trio.run(main)
Yes, we spawn a python process, run asyncio
, start trio
on the asyncio
loop, then send commands to the trio
scheduled tasks to tell asyncio
tasks what to do XD
We need help refining the asyncio-side channel API to be more trio-like. Feel free to sling your opinion in #273!
Higher level "cluster" APIs
To be extra terse the tractor
devs have started hacking some "higher level" APIs for managing actor trees/clusters. These interfaces should generally be condsidered provisional for now but we encourage you to try them and provide feedback. Here's a new API that let's you quickly spawn a flat cluster:
import trio
import tractor
async def sleepy_jane():
= tractor.current_actor().uid
uid print(f'Yo i am actor {uid}')
await trio.sleep_forever()
async def main():
'''
Spawn a flat actor cluster, with one process per
detected core.
'''
dict[str, tractor.Portal]
portal_map: dict[str, str]
results:
# look at this hip new syntax!
async with (
tractor.open_actor_cluster(=[__name__]
modulesas portal_map,
)
as n,
trio.open_nursery()
):
for (name, portal) in portal_map.items():
n.start_soon(portal.run, sleepy_jane)
await trio.sleep(0.5)
# kill the cluster with a cancel
raise KeyboardInterrupt
if __name__ == '__main__':
try:
trio.run(main)except KeyboardInterrupt:
pass
Install
From PyPi:
pip install tractor
From git:
pip install git+git://github.com/goodboy/tractor.git
Under the hood
tractor
is an attempt to pair trionic structured concurrency with distributed Python. You can think of it as a trio
-across-processes or simply as an opinionated replacement for the stdlib's multiprocessing
but built on async programming primitives from the ground up.
Don't be scared off by this description. tractor
is just trio
but with nurseries for process management and cancel-able streaming IPC. If you understand how to work with trio
, tractor
will give you the parallelism you may have been needing.
Wait, huh?! I thought "actors" have messages, and mailboxes and stuff?!
Let's stop and ask how many canon actor model papers have you actually read ;)
From our experience many "actor systems" aren't really "actor models" since they don't adhere to the 3 axioms and pay even less attention to the problem of unbounded non-determinism (which was the whole point for creation of the model in the first place).
From the author's mouth, the only thing required is adherance to the 3 axioms, and that's it.
tractor
adheres to said base requirements of an "actor model":
In response to a message, an actor may:
- send a finite number of new messages
- create a finite number of new actors
- designate a new behavior to process subsequent messages
and requires no further api changes to accomplish this.
If you want do debate this further please feel free to chime in on our chat or discuss on one of the following issues after you've read everything in them:
Let's clarify our parlance
Whether or not tractor
has "actors" underneath should be mostly irrelevant to users other then for referring to the interactions of our primary runtime primitives: each Python process + trio.run()
+ surrounding IPC machinery. These are our high level, base runtime-units-of-abstraction which both are (as much as they can be in Python) and will be referred to as our "actors".
The main goal of tractor
is is to allow for highly distributed software that, through the adherence to structured concurrency, results in systems which fail in predictable, recoverable and maybe even understandable ways; being an "actor model" is just one way to describe properties of the system.
What's on the TODO:
Help us push toward the future of distributed Python.
- Erlang-style supervisors via composed context managers (see #22)
- Typed messaging protocols (ex. via
msgspec.Struct
, see #36) - Typed capability-based (dialog) protocols ( see #196 with draft work started in #311)
- We recently disabled CI-testing on windows and need help getting it running again! (see #327). We do have windows support (and have for quite a while) but since no active hacker exists in the user-base to help test on that OS, for now we're not actively maintaining testing due to the added hassle and general latency..
Feel like saying hi?
This project is very much coupled to the ongoing development of trio
(i.e. tractor
gets most of its ideas from that brilliant community). If you want to help, have suggestions or just want to say hi, please feel free to reach us in our matrix channel. If matrix seems too hip, we're also mostly all in the the trio gitter channel!