tractor/tractor/trionics/_broadcast.py

474 lines
15 KiB
Python

# tractor: structured concurrent "actors".
# Copyright 2018-eternity Tyler Goodlet.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
``tokio`` style broadcast channel.
https://docs.rs/tokio/1.11.0/tokio/sync/broadcast/index.html
'''
from __future__ import annotations
from abc import abstractmethod
from collections import deque
from contextlib import asynccontextmanager
from functools import partial
from operator import ne
from typing import (
Callable,
Awaitable,
Any,
AsyncIterator,
Protocol,
Generic,
TypeVar,
)
import trio
from trio._core._run import Task
from trio.abc import ReceiveChannel
from trio.lowlevel import current_task
from msgspec import Struct
from tractor.log import get_logger
log = get_logger(__name__)
# TODO: use new type-vars syntax from 3.12
# https://realpython.com/python312-new-features/#dedicated-type-variable-syntax
# https://docs.python.org/3/whatsnew/3.12.html#whatsnew312-pep695
# https://docs.python.org/3/reference/simple_stmts.html#type
#
# A regular invariant generic type
T = TypeVar("T")
# covariant because AsyncReceiver[Derived] can be passed to someone
# expecting AsyncReceiver[Base])
ReceiveType = TypeVar("ReceiveType", covariant=True)
class AsyncReceiver(
Protocol,
Generic[ReceiveType],
):
'''
An async receivable duck-type that quacks much like trio's
``trio.abc.ReceiveChannel``.
'''
@abstractmethod
async def receive(self) -> ReceiveType:
...
@abstractmethod
def __aiter__(self) -> AsyncIterator[ReceiveType]:
...
@abstractmethod
async def __anext__(self) -> ReceiveType:
...
# ``trio.abc.AsyncResource`` methods
@abstractmethod
async def aclose(self):
...
@abstractmethod
async def __aenter__(self) -> AsyncReceiver[ReceiveType]:
...
@abstractmethod
async def __aexit__(self, *args) -> None:
...
class Lagged(trio.TooSlowError):
'''
Subscribed consumer task was too slow and was overrun
by the fastest consumer-producer pair.
'''
class BroadcastState(Struct):
'''
Common state to all receivers of a broadcast.
'''
queue: deque
maxlen: int
# map of underlying instance id keys to receiver instances which
# must be provided as a singleton per broadcaster set.
subs: dict[int, int]
# broadcast event to wake up all sleeping consumer tasks
# on a newly produced value from the sender.
recv_ready: tuple[int, trio.Event]|None = None
# if a ``trio.EndOfChannel`` is received on any
# consumer all consumers should be placed in this state
# such that the group is notified of the end-of-broadcast.
# For now, this is solely for testing/debugging purposes.
eoc: bool = False
# If the broadcaster was cancelled, we might as well track it
cancelled: dict[int, Task] = {}
def statistics(self) -> dict[str, Any]:
'''
Return broadcast receiver group "statistics" like many of
``trio``'s internal task-sync primitives.
'''
key: int | None
ev: trio.Event | None
subs = self.subs
if self.recv_ready is not None:
key, ev = self.recv_ready
else:
key = ev = None
qlens: dict[int, int] = {}
for tid, sz in subs.items():
qlens[tid] = sz if sz != -1 else 0
return {
'open_consumers': len(subs),
'queued_len_by_task': qlens,
'max_buffer_size': self.maxlen,
'tasks_waiting': ev.statistics().tasks_waiting if ev else 0,
'tasks_cancelled': self.cancelled,
'next_value_receiver_id': key,
}
class BroadcastReceiver(ReceiveChannel):
'''
A memory receive channel broadcaster which is non-lossy for the
fastest consumer.
Additional consumer tasks can receive all produced values by registering
with ``.subscribe()`` and receiving from the new instance it delivers.
'''
def __init__(
self,
rx_chan: AsyncReceiver,
state: BroadcastState,
receive_afunc: Callable[[], Awaitable[Any]]|None = None,
raise_on_lag: bool = True,
) -> None:
# register the original underlying (clone)
self.key = id(self)
self._state = state
# each consumer has an int count which indicates
# which index contains the next value that the task has not yet
# consumed and thus should read. In the "up-to-date" case the
# consumer task must wait for a new value from the underlying
# receiver and we use ``-1`` as the sentinel for this state.
state.subs[self.key] = -1
# underlying for this receiver
self._rx = rx_chan
self._recv = receive_afunc or rx_chan.receive
self._closed: bool = False
self._raise_on_lag = raise_on_lag
def receive_nowait(
self,
_key: int | None = None,
_state: BroadcastState | None = None,
) -> Any:
'''
Sync version of `.receive()` which does all the low level work
of receiving from the underlying/wrapped receive channel.
'''
key = _key or self.key
state = _state or self._state
# TODO: ideally we can make some way to "lock out" the
# underlying receive channel in some way such that if some task
# tries to pull from it directly (i.e. one we're unaware of)
# then it errors out.
# only tasks which have entered ``.subscribe()`` can
# receive on this broadcaster.
try:
seq = state.subs[key]
except KeyError:
if self._closed:
raise trio.ClosedResourceError
raise RuntimeError(
f'{self} is not registerd as subscriber')
# check that task does not already have a value it can receive
# immediately and/or that it has lagged.
if seq > -1:
# get the oldest value we haven't received immediately
try:
value = state.queue[seq]
except IndexError:
# adhere to ``tokio`` style "lagging":
# "Once RecvError::Lagged is returned, the lagging
# receiver's position is updated to the oldest value
# contained by the channel. The next call to recv will
# return this value."
# https://docs.rs/tokio/1.11.0/tokio/sync/broadcast/index.html#lagging
mxln = state.maxlen
lost = seq - mxln
# decrement to the last value and expect
# consumer to either handle the ``Lagged`` and come back
# or bail out on its own (thus un-subscribing)
state.subs[key] = mxln - 1
# this task was overrun by the producer side
task: Task = current_task()
msg = f'Task `{task.name}` overrun and dropped `{lost}` values'
if self._raise_on_lag:
raise Lagged(msg)
else:
log.warning(msg)
return self.receive_nowait(_key, _state)
state.subs[key] -= 1
return value
raise trio.WouldBlock
async def _receive_from_underlying(
self,
key: int,
state: BroadcastState,
) -> ReceiveType:
if self._closed:
raise trio.ClosedResourceError
event = trio.Event()
assert state.recv_ready is None
state.recv_ready = key, event
try:
# if we're cancelled here it should be
# fine to bail without affecting any other consumers
# right?
value = await self._recv()
# items with lower indices are "newer"
# NOTE: ``collections.deque`` implicitly takes care of
# trucating values outside our ``state.maxlen``. In the
# alt-backend-array-case we'll need to make sure this is
# implemented in similar ringer-buffer-ish style.
state.queue.appendleft(value)
# broadcast new value to all subscribers by increasing
# all sequence numbers that will point in the queue to
# their latest available value.
# don't decrement the sequence for this task since we
# already retreived the last value
# XXX: which of these impls is fastest?
# subs = state.subs.copy()
# subs.pop(key)
for sub_key in filter(
# lambda k: k != key, state.subs,
partial(ne, key), state.subs,
):
state.subs[sub_key] += 1
# NOTE: this should ONLY be set if the above task was *NOT*
# cancelled on the `._recv()` call.
event.set()
return value
except trio.EndOfChannel:
# if any one consumer gets an EOC from the underlying
# receiver we need to unblock and send that signal to
# all other consumers.
self._state.eoc = True
if event.statistics().tasks_waiting:
event.set()
raise
except (
trio.Cancelled,
):
# handle cancelled specially otherwise sibling
# consumers will be awoken with a sequence of -1
# and will potentially try to rewait the underlying
# receiver instead of just cancelling immediately.
self._state.cancelled[key] = current_task()
if event.statistics().tasks_waiting:
event.set()
raise
finally:
# Reset receiver waiter task event for next blocking condition.
# this MUST be reset even if the above ``.recv()`` call
# was cancelled to avoid the next consumer from blocking on
# an event that won't be set!
state.recv_ready = None
async def receive(self) -> ReceiveType:
key = self.key
state = self._state
try:
return self.receive_nowait(
_key=key,
_state=state,
)
except trio.WouldBlock:
pass
# current task already has the latest value **and** is the
# first task to begin waiting for a new one so we begin blocking
# until rescheduled with the a new value from the underlying.
if state.recv_ready is None:
return await self._receive_from_underlying(key, state)
# This task is all caught up and ready to receive the latest
# value, so queue/schedule it to be woken on the next internal
# event.
else:
while state.recv_ready is not None:
# seq = state.subs[key]
# assert seq == -1 # sanity
_, ev = state.recv_ready
await ev.wait()
try:
return self.receive_nowait(
_key=key,
_state=state,
)
except trio.WouldBlock:
if self._closed:
raise trio.ClosedResourceError
subs = state.subs
if (
len(subs) == 1
and key in subs
# or cancelled
):
# XXX: we are the last and only user of this BR so
# likely it makes sense to unwind back to the
# underlying?
# import tractor
# await tractor.breakpoint()
log.warning(
f'Only one sub left for {self}?\n'
'We can probably unwind from breceiver?'
)
# XXX: In the case where the first task to allocate the
# ``.recv_ready`` event is cancelled we will be woken
# with a non-incremented sequence number (the ``-1``
# sentinel) and thus will read the oldest value if we
# use that. Instead we need to detect if we have not
# been incremented and then receive again.
# return await self.receive()
return await self._receive_from_underlying(key, state)
@asynccontextmanager
async def subscribe(
self,
raise_on_lag: bool = True,
) -> AsyncIterator[BroadcastReceiver]:
'''
Subscribe for values from this broadcast receiver.
Returns a new ``BroadCastReceiver`` which is registered for and
pulls data from a clone of the original
``trio.abc.ReceiveChannel`` provided at creation.
'''
if self._closed:
raise trio.ClosedResourceError
state = self._state
br = BroadcastReceiver(
rx_chan=self._rx,
state=state,
receive_afunc=self._recv,
raise_on_lag=raise_on_lag,
)
# assert clone in state.subs
assert br.key in state.subs
try:
yield br
finally:
await br.aclose()
async def aclose(
self,
) -> None:
'''
Close this receiver without affecting other consumers.
'''
if self._closed:
return
# if there are sleeping consumers wake
# them on closure.
rr = self._state.recv_ready
if rr:
_, event = rr
event.set()
# XXX: leaving it like this consumers can still get values
# up to the last received that still reside in the queue.
self._state.subs.pop(self.key)
self._closed = True
def broadcast_receiver(
recv_chan: AsyncReceiver,
max_buffer_size: int,
receive_afunc: Callable[[], Awaitable[Any]]|None = None,
raise_on_lag: bool = True,
) -> BroadcastReceiver:
return BroadcastReceiver(
recv_chan,
state=BroadcastState(
queue=deque(maxlen=max_buffer_size),
maxlen=max_buffer_size,
subs={},
),
receive_afunc=receive_afunc,
raise_on_lag=raise_on_lag,
)