tractor/tractor/_streaming.py

608 lines
22 KiB
Python

"""
Message stream types and APIs.
"""
from __future__ import annotations
import inspect
from contextlib import contextmanager, asynccontextmanager
from dataclasses import dataclass
from typing import (
Any, Iterator, Optional, Callable,
AsyncGenerator, Dict,
AsyncIterator, Awaitable
)
import warnings
import trio
from ._ipc import Channel
from ._exceptions import unpack_error, ContextCancelled
from ._state import current_actor
from ._broadcast import broadcast_receiver, BroadcastReceiver
from .log import get_logger
log = get_logger(__name__)
# TODO: generic typing like trio's receive channel
# but with msgspec messages?
# class ReceiveChannel(AsyncResource, Generic[ReceiveType]):
class ReceiveMsgStream(trio.abc.ReceiveChannel):
'''A IPC message stream for receiving logically sequenced values
over an inter-actor ``Channel``. This is the type returned to
a local task which entered either ``Portal.open_stream_from()`` or
``Context.open_stream()``.
Termination rules:
- on cancellation the stream is **not** implicitly closed and the
surrounding ``Context`` is expected to handle how that cancel
is relayed to any task on the remote side.
- if the remote task signals the end of a stream the
``ReceiveChannel`` semantics dictate that a ``StopAsyncIteration``
to terminate the local ``async for``.
'''
def __init__(
self,
ctx: 'Context', # typing: ignore # noqa
rx_chan: trio.MemoryReceiveChannel,
) -> None:
self._ctx = ctx
self._rx_chan = rx_chan
self._broadcaster: Optional[BroadcastReceiver] = None
# flag to denote end of stream
self._eoc: bool = False
# delegate directly to underlying mem channel
def receive_nowait(self):
msg = self._rx_chan.receive_nowait()
return msg['yield']
async def receive(self):
'''Async receive a single msg from the IPC transport, the next
in sequence for this stream.
'''
# see ``.aclose()`` for notes on the old behaviour prior to
# introducing this
if self._eoc:
raise trio.EndOfChannel
try:
msg = await self._rx_chan.receive()
return msg['yield']
except KeyError:
# internal error should never get here
assert msg.get('cid'), ("Received internal error at portal?")
# TODO: handle 2 cases with 3.10 match syntax
# - 'stop'
# - 'error'
# possibly just handle msg['stop'] here!
if msg.get('stop'):
log.debug(f"{self} was stopped at remote end")
# # when the send is closed we assume the stream has
# # terminated and signal this local iterator to stop
# await self.aclose()
# XXX: this causes ``ReceiveChannel.__anext__()`` to
# raise a ``StopAsyncIteration`` **and** in our catch
# block below it will trigger ``.aclose()``.
raise trio.EndOfChannel
# TODO: test that shows stream raising an expected error!!!
elif msg.get('error'):
# raise the error message
raise unpack_error(msg, self._ctx.chan)
else:
raise
except (
trio.ClosedResourceError, # by self._rx_chan
trio.EndOfChannel, # by self._rx_chan or `stop` msg from far end
):
# XXX: we close the stream on any of these error conditions:
# a ``ClosedResourceError`` indicates that the internal
# feeder memory receive channel was closed likely by the
# runtime after the associated transport-channel
# disconnected or broke.
# an ``EndOfChannel`` indicates either the internal recv
# memchan exhausted **or** we raisesd it just above after
# receiving a `stop` message from the far end of the stream.
# Previously this was triggered by calling ``.aclose()`` on
# the send side of the channel inside
# ``Actor._push_result()`` (should still be commented code
# there - which should eventually get removed), but now the
# 'stop' message handling has been put just above.
# TODO: Locally, we want to close this stream gracefully, by
# terminating any local consumers tasks deterministically.
# One we have broadcast support, we **don't** want to be
# closing this stream and not flushing a final value to
# remaining (clone) consumers who may not have been
# scheduled to receive it yet.
# when the send is closed we assume the stream has
# terminated and signal this local iterator to stop
await self.aclose()
raise # propagate
async def aclose(self):
"""Cancel associated remote actor task and local memory channel
on close.
"""
# XXX: keep proper adherance to trio's `.aclose()` semantics:
# https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.AsyncResource.aclose
rx_chan = self._rx_chan
if rx_chan._closed:
log.warning(f"{self} is already closed")
# this stream has already been closed so silently succeed as
# per ``trio.AsyncResource`` semantics.
# https://trio.readthedocs.io/en/stable/reference-io.html#trio.abc.AsyncResource.aclose
return
self._eoc = True
# NOTE: this is super subtle IPC messaging stuff:
# Relay stop iteration to far end **iff** we're
# in bidirectional mode. If we're only streaming
# *from* one side then that side **won't** have an
# entry in `Actor._cids2qs` (maybe it should though?).
# So any `yield` or `stop` msgs sent from the caller side
# will cause key errors on the callee side since there is
# no entry for a local feeder mem chan since the callee task
# isn't expecting messages to be sent by the caller.
# Thus, we must check that this context DOES NOT
# have a portal reference to ensure this is indeed the callee
# side and can relay a 'stop'.
# In the bidirectional case, `Context.open_stream()` will create
# the `Actor._cids2qs` entry from a call to
# `Actor.get_memchans()` and will send the stop message in
# ``__aexit__()`` on teardown so it **does not** need to be
# called here.
if not self._ctx._portal:
# Only for 2 way streams can we can send stop from the
# caller side.
try:
# NOTE: if this call is cancelled we expect this end to
# handle as though the stop was never sent (though if it
# was it shouldn't matter since it's unlikely a user
# will try to re-use a stream after attemping to close
# it).
await self._ctx.send_stop()
except (
trio.BrokenResourceError,
trio.ClosedResourceError
):
# the underlying channel may already have been pulled
# in which case our stop message is meaningless since
# it can't traverse the transport.
log.debug(f'Channel for {self} was already closed')
# Do we close the local mem chan ``self._rx_chan`` ??!?
# NO, DEFINITELY NOT if we're a bi-dir ``MsgStream``!
# BECAUSE this same core-msg-loop mem recv-chan is used to deliver
# the potential final result from the surrounding inter-actor
# `Context` so we don't want to close it until that context has
# run to completion.
# XXX: Notes on old behaviour:
# await rx_chan.aclose()
# In the receive-only case, ``Portal.open_stream_from()`` used
# to rely on this call explicitly on teardown such that a new
# call to ``.receive()`` after ``rx_chan`` had been closed, would
# result in us raising a ``trio.EndOfChannel`` (since we
# remapped the ``trio.ClosedResourceError`). However, now if for some
# reason the stream's consumer code tries to manually receive a new
# value before ``.aclose()`` is called **but** the far end has
# stopped `.receive()` **must** raise ``trio.EndofChannel`` in
# order to avoid an infinite hang on ``.__anext__()``; this is
# why we added ``self._eoc`` to denote stream closure indepedent
# of ``rx_chan``.
# In theory we could still use this old method and close the
# underlying msg-loop mem chan as above and then **not** check
# for ``self._eoc`` in ``.receive()`` (if for some reason we
# think that check is a bottle neck - not likely) **but** then
# we would need to map the resulting
# ``trio.ClosedResourceError`` to a ``trio.EndOfChannel`` in
# ``.receive()`` (as it originally was before bi-dir streaming
# support) in order to trigger stream closure. The old behaviour
# is arguably more confusing since we lose detection of the
# runtime's closure of ``rx_chan`` in the case where we may
# still need to consume msgs that are "in transit" from the far
# end (eg. for ``Context.result()``).
def clone(self):
"""Clone this receive channel allowing for multi-task
consumption from the same channel.
"""
return type(self)(
self._ctx,
self._rx_chan.clone(),
)
@asynccontextmanager
async def subscribe(
self,
) -> AsyncIterator[BroadcastReceiver]:
'''Allocate and return a ``BroadcastReceiver`` which delegates
to this message stream.
This allows multiple local tasks to receive each their own copy
of this message stream.
This operation is indempotent and and mutates this stream's
receive machinery to copy and window-length-store each received
value from the far end via the internally created broudcast
receiver wrapper.
'''
# NOTE: This operation is indempotent and non-reversible, so be
# sure you can deal with any (theoretical) overhead of the the
# allocated ``BroadcastReceiver`` before calling this method for
# the first time.
if self._broadcaster is None:
self._broadcaster = broadcast_receiver(
self,
self._rx_chan._state.max_buffer_size, # type: ignore
)
# NOTE: we override the original stream instance's receive
# method to now delegate to the broadcaster's ``.receive()``
# such that new subscribers will be copied received values
# and this stream doesn't have to expect it's original
# consumer(s) to get a new broadcast rx handle.
self.receive = self._broadcaster.receive # type: ignore
# seems there's no graceful way to type this with ``mypy``?
# https://github.com/python/mypy/issues/708
async with self._broadcaster.subscribe() as bstream:
# a ``MsgStream`` clone is allocated for the
# broadcaster to track this entry's subscription
stream_clone = bstream._rx
assert stream_clone is not self
yield bstream
class MsgStream(ReceiveMsgStream, trio.abc.Channel):
"""
Bidirectional message stream for use within an inter-actor actor
``Context```.
"""
async def send(
self,
data: Any
) -> None:
'''Send a message over this stream to the far end.
'''
await self._ctx.chan.send({'yield': data, 'cid': self._ctx.cid})
@dataclass
class Context:
'''An inter-actor task communication context.
Allows maintaining task or protocol specific state between
2 communicating actor tasks. A unique context is created on the
callee side/end for every request to a remote actor from a portal.
A context can be cancelled and (possibly eventually restarted) from
either side of the underlying IPC channel.
A context can be used to open task oriented message streams and can
be thought of as an IPC aware inter-actor cancel scope.
'''
chan: Channel
cid: str
# only set on the caller side
_portal: Optional['Portal'] = None # type: ignore # noqa
_recv_chan: Optional[trio.MemoryReceiveChannel] = None
_result: Optional[Any] = False
_cancel_called: bool = False
# only set on the callee side
_scope_nursery: Optional[trio.Nursery] = None
async def send_yield(self, data: Any) -> None:
warnings.warn(
"`Context.send_yield()` is now deprecated. "
"Use ``MessageStream.send()``. ",
DeprecationWarning,
stacklevel=2,
)
await self.chan.send({'yield': data, 'cid': self.cid})
async def send_stop(self) -> None:
await self.chan.send({'stop': True, 'cid': self.cid})
def _error_from_remote_msg(
self,
msg: Dict[str, Any],
) -> None:
'''Unpack and raise a msg error into the local scope
nursery for this context.
Acts as a form of "relay" for a remote error raised
in the corresponding remote callee task.
'''
assert self._scope_nursery
async def raiser():
raise unpack_error(msg, self.chan)
self._scope_nursery.start_soon(raiser)
async def cancel(self) -> None:
'''Cancel this inter-actor-task context.
Request that the far side cancel it's current linked context,
Timeout quickly in an attempt to sidestep 2-generals...
'''
side = 'caller' if self._portal else 'callee'
log.warning(f'Cancelling {side} side of context to {self.chan}')
self._cancel_called = True
if side == 'caller':
if not self._portal:
raise RuntimeError(
"No portal found, this is likely a callee side context"
)
cid = self.cid
with trio.move_on_after(0.5) as cs:
cs.shield = True
log.warning(
f"Cancelling stream {cid} to "
f"{self._portal.channel.uid}")
# NOTE: we're telling the far end actor to cancel a task
# corresponding to *this actor*. The far end local channel
# instance is passed to `Actor._cancel_task()` implicitly.
await self._portal.run_from_ns('self', '_cancel_task', cid=cid)
if cs.cancelled_caught:
# XXX: there's no way to know if the remote task was indeed
# cancelled in the case where the connection is broken or
# some other network error occurred.
# if not self._portal.channel.connected():
if not self.chan.connected():
log.warning(
"May have failed to cancel remote task "
f"{cid} for {self._portal.channel.uid}")
else:
# callee side remote task
# TODO: should we have an explicit cancel message
# or is relaying the local `trio.Cancelled` as an
# {'error': trio.Cancelled, cid: "blah"} enough?
# This probably gets into the discussion in
# https://github.com/goodboy/tractor/issues/36
assert self._scope_nursery
self._scope_nursery.cancel_scope.cancel()
if self._recv_chan:
await self._recv_chan.aclose()
@asynccontextmanager
async def open_stream(
self,
) -> AsyncGenerator[MsgStream, None]:
'''Open a ``MsgStream``, a bi-directional stream connected to the
cross-actor (far end) task for this ``Context``.
This context manager must be entered on both the caller and
callee for the stream to logically be considered "connected".
A ``MsgStream`` is currently "one-shot" use, meaning if you
close it you can not "re-open" it for streaming and instead you
must re-establish a new surrounding ``Context`` using
``Portal.open_context()``. In the future this may change but
currently there seems to be no obvious reason to support
"re-opening":
- pausing a stream can be done with a message.
- task errors will normally require a restart of the entire
scope of the inter-actor task context due to the nature of
``trio``'s cancellation system.
'''
actor = current_actor()
# here we create a mem chan that corresponds to the
# far end caller / callee.
# NOTE: in one way streaming this only happens on the
# caller side inside `Actor.send_cmd()` so if you try
# to send a stop from the caller to the callee in the
# single-direction-stream case you'll get a lookup error
# currently.
_, recv_chan = actor.get_memchans(
self.chan.uid,
self.cid
)
# Likewise if the surrounding context has been cancelled we error here
# since it likely means the surrounding block was exited or
# killed
if self._cancel_called:
task = trio.lowlevel.current_task().name
raise ContextCancelled(
f'Context around {actor.uid[0]}:{task} was already cancelled!'
)
# XXX: If the underlying channel feeder receive mem chan has
# been closed then likely client code has already exited
# a ``.open_stream()`` block prior or there was some other
# unanticipated error or cancellation from ``trio``.
if recv_chan._closed:
raise trio.ClosedResourceError(
'The underlying channel for this stream was already closed!?')
async with MsgStream(
ctx=self,
rx_chan=recv_chan,
) as rchan:
if self._portal:
self._portal._streams.add(rchan)
try:
# ensure we aren't cancelled before delivering
# the stream
# await trio.lowlevel.checkpoint()
yield rchan
except trio.EndOfChannel:
# likely the far end sent us a 'stop' message to
# terminate the stream.
raise
else:
# XXX: Make the stream "one-shot use". On exit, signal
# ``trio.EndOfChannel``/``StopAsyncIteration`` to the
# far end.
await self.send_stop()
finally:
if self._portal:
self._portal._streams.remove(rchan)
async def result(self) -> Any:
'''From a caller side, wait for and return the final result from
the callee side task.
'''
assert self._portal, "Context.result() can not be called from callee!"
assert self._recv_chan
if self._result is False:
if not self._recv_chan._closed: # type: ignore
# wait for a final context result consuming
# and discarding any bi dir stream msgs still
# in transit from the far end.
while True:
msg = await self._recv_chan.receive()
try:
self._result = msg['return']
break
except KeyError:
if 'yield' in msg:
# far end task is still streaming to us..
log.warning(f'Remote stream deliverd {msg}')
# do disard
continue
elif 'stop' in msg:
log.debug('Remote stream terminated')
continue
# internal error should never get here
assert msg.get('cid'), (
"Received internal error at portal?")
raise unpack_error(msg, self._portal.channel)
return self._result
async def started(self, value: Optional[Any] = None) -> None:
if self._portal:
raise RuntimeError(
f"Caller side context {self} can not call started!")
await self.chan.send({'started': value, 'cid': self.cid})
# TODO: do we need a restart api?
# async def restart(self) -> None:
# pass
def stream(func: Callable) -> Callable:
"""Mark an async function as a streaming routine with ``@stream``.
"""
# annotate
# TODO: apply whatever solution ``mypy`` ends up picking for this:
# https://github.com/python/mypy/issues/2087#issuecomment-769266912
func._tractor_stream_function = True # type: ignore
sig = inspect.signature(func)
params = sig.parameters
if 'stream' not in params and 'ctx' in params:
warnings.warn(
"`@tractor.stream decorated funcs should now declare a `stream` "
" arg, `ctx` is now designated for use with @tractor.context",
DeprecationWarning,
stacklevel=2,
)
if (
'ctx' not in params and
'to_trio' not in params and
'stream' not in params
):
raise TypeError(
"The first argument to the stream function "
f"{func.__name__} must be `ctx: tractor.Context` "
"(Or ``to_trio`` if using ``asyncio`` in guest mode)."
)
return func
def context(func: Callable) -> Callable:
"""Mark an async function as a streaming routine with ``@context``.
"""
# annotate
# TODO: apply whatever solution ``mypy`` ends up picking for this:
# https://github.com/python/mypy/issues/2087#issuecomment-769266912
func._tractor_context_function = True # type: ignore
sig = inspect.signature(func)
params = sig.parameters
if 'ctx' not in params:
raise TypeError(
"The first argument to the context function "
f"{func.__name__} must be `ctx: tractor.Context`"
)
return func