Using the context manager interface does some extra teardown beyond simply
calling `.wait()`. Pass the subactor's "uid" on the exec line for
debugging purposes when monitoring the process tree from the OS.
Hard code the child script module path to avoid a double import warning.
This is an edit to factor out changes needed for the `asyncio` in guest mode
integration (which currently isn't tested well) so that later more pertinent
changes (which are tested well) can be rebased off of this branch and
merged into mainline sooner. The *infect_asyncio* branch will need to be
rebased onto this branch as well before merge to mainline.
This is an initial solution for #120.
Allow spawning `asyncio` based actors which run `trio` in guest
mode. This enables spawning `tractor` actors on top of the `asyncio`
event loop whilst still leveraging the SC focused internal actor
supervision machinery. Add a `tractor.to_syncio.run()` api to allow
spawning tasks on the `asyncio` loop from an embedded (remote) `trio`
task and return or stream results all the way back through the `tractor`
IPC system using a very similar api to portals.
One outstanding problem is getting SC around calls to
`asyncio.create_task()`. Currently a task that crashes isn't able to
easily relay the error to the embedded `trio` task without us fully
enforcing the portals based message protocol (which seems superfluous
given the error ref is in process). Further experiments using `anyio`
task groups may alleviate this.
The logic in the `ActorNursery` block is critical to cancellation
semantics and in particular, understanding how supervisor strategies are
invoked. Stick in a bunch of explanatory comments to clear up these
details and also prepare to introduce more supervisor strats besides
the current one-cancels-all approach.
Instead of hackery trying to map modules manually from the filesystem
let Python do all the work by simply copying what ``multiprocessing``
does to "fixup the __main__ module" in spawned subprocesses. The new
private module ``_mp_fixup_main.py`` is simply cherry picked code from
``multiprocessing.spawn`` which does just that. We only need these
"fixups" when using a backend other then ``multiprocessing``; for
now just when using ``trio_run_in_process``.
Thanks to @salotz for pointing out that the first example in the docs
was broken. Though it's somewhat embarrassing this might also explain
the problem in #79 and certain issues in #59...
The solution here is to import the target RPC module using the its
unique basename and absolute filepath in the sub-actor that requires it.
Special handling for `__main__` and `__mp_main__` is needed since the
spawned subprocess will have no knowledge about these parent-
-state-specific module variables. Solution: map the modules name to the
respective module file basename in the child process since the module
variables will of course have different values in children.
Add a `--spawn-backend` option which can be set to one of {'mp',
'trio_run_in_process'} which will either run the test suite using the
`multiprocessing` or `trio-run-in-process` backend respectively.
Currently trying to run both in the same session can result in hangs
seemingly due to a lack of cleanup of forkservers / resource trackers
from `multiprocessing` which cause broken pipe errors on occasion (no
idea on the details).
For `test_cancellation.py::test_nested_multierrors`, use less nesting
when mp is used since it breaks if we push it too hard with the
whole recursive subprocess spawning thing...
Set `trio-run-in-process` as the default on *nix systems and
`multiprocessing`'s spawn method on Windows. Enable overriding the
default choice using `tractor._spawn.try_set_start_method()`. Allows
for easy runs of the test suite using a user chosen backend.
This took a ton of tinkering and a rework of the actor nursery tear down
logic. The main changes include:
- each subprocess is now spawned from inside a trio task
from one of two containing nurseries created in the body of
`tractor.open_nursery()`: one for `run_in_actor()` processes and one for
`start_actor()` "daemons". This is to address the need for
`trio-run-in_process.open_in_process()` opening a nursery which must
be closed from the same task that opened it. Using this same approach
for `multiprocessing` seems to work well. The nurseries are waited in
order (rip actors then daemon actors) during tear down which allows
for avoiding the recursive re-entry of `ActorNursery.wait()` handled
prior.
- pull out all the nested functions / closures that were in
`ActorNursery.wait()` and move into the `_spawn` module such that
that process shutdown logic takes place in each containing task's
code path. This allows for vastly simplifying `.wait()` to just contain an
event trigger which initiates process waiting / result collection.
Likely `.wait()` should just be removed since it can no longer be used
to synchronously wait on the actor nursery.
- drop `ActorNursery.__aenter__()` / `.__atexit__()` and move this
"supervisor" tear down logic into the closing block of `open_nursery()`.
This not only cleans makes the code more comprehensible it also
makes our nursery implementation look more like the one in `trio`.
Resolves#93
Get a few more things working:
- fail reliably when remote module loading goes awry
- do a real hacky job of module loading using `sys.path` stuffsies
- we're still totally borked when trying to spin up and quickly cancel
a bunch of subactors...
It's a small move forward I guess.
Prepend the actor and task names in each log emission. This makes
debugging much more sane since you can see from which process and
running task the log message originates from!
Resolves#13
If a nursery fails to cancel (some sub-actors presumably) then hard kill
the whole process tree to avoid hangs during a catastrophic failure.
This logic may get factored out (and changed) as we introduce custom
supervisor strategies.
`trio.MultiError` isn't an `Exception` (derived instead from
`BaseException`) so we have to specially catch it in the task
invocation machinery and ship it upwards (like regular errors)
since nurseries running in sub-actors can raise them.
Add `@tractor.stream` which must be used to denote non async generator
streaming functions which use the `tractor.Context` API to push values.
This enforces a more explicit denotation as well as allows enforcing the
declaration of the `ctx` argument in definitions.