Since we currently have no real "discovery protocol" between process
trees, the current naive approach is to check via a connect and drop to
see if a TCP server is bound to a particular address during root actor
startup. This was a historical decision and had no real grounding beyond
taking a simple approach to get something working when the project
was first started.
This is obviously problematic from an error handling perspective since
we need to be able to avoid such quick connect-and-drops from cancelling
an "arbiter"'s (registry actor's) channel-msg loop machinery (which
would propagate and cancel the actor).
For now we map this particular TCP error, which gets remapped by `trio`
as a `trio.BrokenResourceError` to our own internal `TransportClosed`
which is swallowed by channel message loop processing and indicates
a graceful teardown of the far end actor.
This change some super old (and bad) code from the project's very early
days. For some redic reason i must have thought masking `trio`'s
internal stream / transport errors and a TCP EOF as `StopAsyncIteration`
somehow a good idea. The reality is you probably
want to know the difference between an unexpected transport error
and a simple EOF lol. This begins to resolve that by adding our own
special `TransportClosed` error to signal the "graceful" termination of
a channel's underlying transport. Oh, and this builds on the `msgspec`
integration which helped shed light on the core issues here B)
It's clear now that special attention is needed to handle the case where
a spawned `multiprocessing` proc is started but then the parent is
cancelled before the child can connect back; in this case we need to be
sure to kill the near-zombie child asap. This may end up being the
solution to other resiliency issues seen around mp with nested process
trees too. More testing is needed to be sure.
Relates to #84#89#134#146
NB: this is a breaking change removing support for `Portal.run()` being
able to invoke remote streaming functions and instead replacing the
method call with an async context manager api `Portal.open_stream_from()`
This style explicitly defines stream teardown at the call site instead
of expecting the user to handle tricky things correctly themselves: eg.
`async_geneartor.aclosing()`. Going forward `Portal.run()` can be used
only for invoking async functions.
Move receive stream into streaming modules and rebrand as a "message
stream". Factor out cancellation mechanics in `.aclose()` into the
`Context` type which will soon provide the api for for cancelling portal
invocations. Comment-stage a few methods on both types in anticipation
of a new bi-directional streaming api. Add a `MsgStream` bidirectional
channel type which will be the eventual type yielded from
`Context.open_stream()`. Adjust the response/dialog types to be the set
`{'asyncfun', 'asyncgen', 'context'}`. OH, and add async func checking
in `Portal.run()` to catch and error on sync funcs early.