Move linux specifics from tractor.ipc._shm into tractor.ipc._linux
parent
41e84cc701
commit
8cd1bf377a
|
@ -3,7 +3,7 @@ import time
|
|||
import trio
|
||||
import pytest
|
||||
import tractor
|
||||
from tractor.ipc._shm import (
|
||||
from tractor.ipc import (
|
||||
EFD_NONBLOCK,
|
||||
open_eventfd,
|
||||
RingBuffSender,
|
||||
|
|
|
@ -1,11 +1,21 @@
|
|||
import platform
|
||||
|
||||
from ._chan import (
|
||||
_connect_chan,
|
||||
MsgTransport,
|
||||
Channel
|
||||
_connect_chan as _connect_chan,
|
||||
MsgTransport as MsgTransport,
|
||||
Channel as Channel
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'_connect_chan',
|
||||
'MsgTransport',
|
||||
'Channel',
|
||||
]
|
||||
if platform.system() == 'Linux':
|
||||
from ._linux import (
|
||||
EFD_SEMAPHORE as EFD_SEMAPHORE,
|
||||
EFD_CLOEXEC as EFD_CLOEXEC,
|
||||
EFD_NONBLOCK as EFD_NONBLOCK,
|
||||
open_eventfd as open_eventfd,
|
||||
write_eventfd as write_eventfd,
|
||||
read_eventfd as read_eventfd,
|
||||
close_eventfd as close_eventfd,
|
||||
EventFD as EventFD,
|
||||
RingBuffSender as RingBuffSender,
|
||||
RingBuffReceiver as RingBuffReceiver
|
||||
)
|
||||
|
|
|
@ -0,0 +1,324 @@
|
|||
|
||||
import os
|
||||
import errno
|
||||
|
||||
from multiprocessing.shared_memory import SharedMemory
|
||||
|
||||
import cffi
|
||||
import trio
|
||||
|
||||
ffi = cffi.FFI()
|
||||
|
||||
# Declare the C functions and types we plan to use.
|
||||
# - eventfd: for creating the event file descriptor
|
||||
# - write: for writing to the file descriptor
|
||||
# - read: for reading from the file descriptor
|
||||
# - close: for closing the file descriptor
|
||||
ffi.cdef(
|
||||
'''
|
||||
int eventfd(unsigned int initval, int flags);
|
||||
|
||||
ssize_t write(int fd, const void *buf, size_t count);
|
||||
ssize_t read(int fd, void *buf, size_t count);
|
||||
|
||||
int close(int fd);
|
||||
'''
|
||||
)
|
||||
|
||||
|
||||
# Open the default dynamic library (essentially 'libc' in most cases)
|
||||
C = ffi.dlopen(None)
|
||||
|
||||
# Constants from <sys/eventfd.h>, if needed.
|
||||
EFD_SEMAPHORE = 1
|
||||
EFD_CLOEXEC = 0o2000000
|
||||
EFD_NONBLOCK = 0o4000
|
||||
|
||||
|
||||
def open_eventfd(initval: int = 0, flags: int = 0) -> int:
|
||||
'''
|
||||
Open an eventfd with the given initial value and flags.
|
||||
Returns the file descriptor on success, otherwise raises OSError.
|
||||
|
||||
'''
|
||||
fd = C.eventfd(initval, flags)
|
||||
if fd < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'eventfd failed')
|
||||
return fd
|
||||
|
||||
def write_eventfd(fd: int, value: int) -> int:
|
||||
'''
|
||||
Write a 64-bit integer (uint64_t) to the eventfd's counter.
|
||||
|
||||
'''
|
||||
# Create a uint64_t* in C, store `value`
|
||||
data_ptr = ffi.new('uint64_t *', value)
|
||||
|
||||
# Call write(fd, data_ptr, 8)
|
||||
# We expect to write exactly 8 bytes (sizeof(uint64_t))
|
||||
ret = C.write(fd, data_ptr, 8)
|
||||
if ret < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'write to eventfd failed')
|
||||
return ret
|
||||
|
||||
def read_eventfd(fd: int) -> int:
|
||||
'''
|
||||
Read a 64-bit integer (uint64_t) from the eventfd, returning the value.
|
||||
Reading resets the counter to 0 (unless using EFD_SEMAPHORE).
|
||||
|
||||
'''
|
||||
# Allocate an 8-byte buffer in C for reading
|
||||
buf = ffi.new('char[]', 8)
|
||||
|
||||
ret = C.read(fd, buf, 8)
|
||||
if ret < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'read from eventfd failed')
|
||||
# Convert the 8 bytes we read into a Python integer
|
||||
data_bytes = ffi.unpack(buf, 8) # returns a Python bytes object of length 8
|
||||
value = int.from_bytes(data_bytes, byteorder='little', signed=False)
|
||||
return value
|
||||
|
||||
def close_eventfd(fd: int) -> int:
|
||||
'''
|
||||
Close the eventfd.
|
||||
|
||||
'''
|
||||
ret = C.close(fd)
|
||||
if ret < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'close failed')
|
||||
|
||||
|
||||
class EventFD:
|
||||
'''
|
||||
Use a previously opened eventfd(2), meant to be used in
|
||||
sub-actors after root actor opens the eventfds then passes
|
||||
them through pass_fds
|
||||
|
||||
'''
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd: int,
|
||||
omode: str
|
||||
):
|
||||
self._fd: int = fd
|
||||
self._omode: str = omode
|
||||
self._fobj = None
|
||||
|
||||
@property
|
||||
def fd(self) -> int | None:
|
||||
return self._fd
|
||||
|
||||
def write(self, value: int) -> int:
|
||||
return write_eventfd(self._fd, value)
|
||||
|
||||
async def read(self) -> int:
|
||||
#TODO: how to handle signals?
|
||||
return await trio.to_thread.run_sync(read_eventfd, self._fd)
|
||||
|
||||
def open(self):
|
||||
self._fobj = os.fdopen(self._fd, self._omode)
|
||||
|
||||
def close(self):
|
||||
if self._fobj:
|
||||
self._fobj.close()
|
||||
|
||||
def __enter__(self):
|
||||
self.open()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.close()
|
||||
|
||||
|
||||
class RingBuffSender(trio.abc.SendStream):
|
||||
'''
|
||||
IPC Reliable Ring Buffer sender side implementation
|
||||
|
||||
`eventfd(2)` is used for wrap around sync, and also to signal
|
||||
writes to the reader.
|
||||
|
||||
TODO: if blocked on wrap around event wait it will not respond
|
||||
to signals, fix soon TM
|
||||
'''
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shm_key: str,
|
||||
write_eventfd: int,
|
||||
wrap_eventfd: int,
|
||||
start_ptr: int = 0,
|
||||
buf_size: int = 10 * 1024,
|
||||
clean_shm_on_exit: bool = True
|
||||
):
|
||||
self._shm = SharedMemory(
|
||||
name=shm_key,
|
||||
size=buf_size,
|
||||
create=True
|
||||
)
|
||||
self._write_event = EventFD(write_eventfd, 'w')
|
||||
self._wrap_event = EventFD(wrap_eventfd, 'r')
|
||||
self._ptr = start_ptr
|
||||
self.clean_shm_on_exit = clean_shm_on_exit
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
return self._shm.name
|
||||
|
||||
@property
|
||||
def size(self) -> int:
|
||||
return self._shm.size
|
||||
|
||||
@property
|
||||
def ptr(self) -> int:
|
||||
return self._ptr
|
||||
|
||||
@property
|
||||
def write_fd(self) -> int:
|
||||
return self._write_event.fd
|
||||
|
||||
@property
|
||||
def wrap_fd(self) -> int:
|
||||
return self._wrap_event.fd
|
||||
|
||||
async def send_all(self, data: bytes | bytearray | memoryview):
|
||||
# while data is larger than the remaining buf
|
||||
target_ptr = self.ptr + len(data)
|
||||
while target_ptr > self.size:
|
||||
# write all bytes that fit
|
||||
remaining = self.size - self.ptr
|
||||
self._shm.buf[self.ptr:] = data[:remaining]
|
||||
# signal write and wait for reader wrap around
|
||||
self._write_event.write(remaining)
|
||||
await self._wrap_event.read()
|
||||
|
||||
# wrap around and trim already written bytes
|
||||
self._ptr = 0
|
||||
data = data[remaining:]
|
||||
target_ptr = self._ptr + len(data)
|
||||
|
||||
# remaining data fits on buffer
|
||||
self._shm.buf[self.ptr:target_ptr] = data
|
||||
self._write_event.write(len(data))
|
||||
self._ptr = target_ptr
|
||||
|
||||
async def wait_send_all_might_not_block(self):
|
||||
raise NotImplementedError
|
||||
|
||||
async def aclose(self):
|
||||
self._write_event.close()
|
||||
self._wrap_event.close()
|
||||
if self.clean_shm_on_exit:
|
||||
self._shm.unlink()
|
||||
|
||||
else:
|
||||
self._shm.close()
|
||||
|
||||
async def __aenter__(self):
|
||||
self._write_event.open()
|
||||
self._wrap_event.open()
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
await self.aclose()
|
||||
|
||||
|
||||
class RingBuffReceiver(trio.abc.ReceiveStream):
|
||||
'''
|
||||
IPC Reliable Ring Buffer receiver side implementation
|
||||
|
||||
`eventfd(2)` is used for wrap around sync, and also to signal
|
||||
writes to the reader.
|
||||
|
||||
Unless eventfd(2) object is opened with EFD_NONBLOCK flag,
|
||||
calls to `receive_some` will block the signal handling,
|
||||
on the main thread, for now solution is using polling,
|
||||
working on a way to unblock GIL during read(2) to allow
|
||||
signal processing on the main thread.
|
||||
'''
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shm_key: str,
|
||||
write_eventfd: int,
|
||||
wrap_eventfd: int,
|
||||
start_ptr: int = 0,
|
||||
buf_size: int = 10 * 1024,
|
||||
flags: int = 0
|
||||
):
|
||||
self._shm = SharedMemory(
|
||||
name=shm_key,
|
||||
size=buf_size,
|
||||
create=False
|
||||
)
|
||||
self._write_event = EventFD(write_eventfd, 'w')
|
||||
self._wrap_event = EventFD(wrap_eventfd, 'r')
|
||||
self._ptr = start_ptr
|
||||
self._flags = flags
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
return self._shm.name
|
||||
|
||||
@property
|
||||
def size(self) -> int:
|
||||
return self._shm.size
|
||||
|
||||
@property
|
||||
def ptr(self) -> int:
|
||||
return self._ptr
|
||||
|
||||
@property
|
||||
def write_fd(self) -> int:
|
||||
return self._write_event.fd
|
||||
|
||||
@property
|
||||
def wrap_fd(self) -> int:
|
||||
return self._wrap_event.fd
|
||||
|
||||
async def receive_some(
|
||||
self,
|
||||
max_bytes: int | None = None,
|
||||
nb_timeout: float = 0.1
|
||||
) -> memoryview:
|
||||
# if non blocking eventfd enabled, do polling
|
||||
# until next write, this allows signal handling
|
||||
if self._flags | EFD_NONBLOCK:
|
||||
delta = None
|
||||
while delta is None:
|
||||
try:
|
||||
delta = await self._write_event.read()
|
||||
|
||||
except OSError as e:
|
||||
if e.errno == 'EAGAIN':
|
||||
continue
|
||||
|
||||
raise e
|
||||
|
||||
else:
|
||||
delta = await self._write_event.read()
|
||||
|
||||
# fetch next segment and advance ptr
|
||||
next_ptr = self._ptr + delta
|
||||
segment = self._shm.buf[self._ptr:next_ptr]
|
||||
self._ptr = next_ptr
|
||||
|
||||
if self.ptr == self.size:
|
||||
# reached the end, signal wrap around
|
||||
self._ptr = 0
|
||||
self._wrap_event.write(1)
|
||||
|
||||
return segment
|
||||
|
||||
async def aclose(self):
|
||||
self._write_event.close()
|
||||
self._wrap_event.close()
|
||||
self._shm.close()
|
||||
|
||||
async def __aenter__(self):
|
||||
self._write_event.open()
|
||||
self._wrap_event.open()
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
await self.aclose()
|
|
@ -25,7 +25,6 @@ considered optional within the context of this runtime-library.
|
|||
from __future__ import annotations
|
||||
from sys import byteorder
|
||||
import time
|
||||
import platform
|
||||
from typing import Optional
|
||||
from multiprocessing import shared_memory as shm
|
||||
from multiprocessing.shared_memory import (
|
||||
|
@ -832,328 +831,3 @@ def attach_shm_list(
|
|||
name=key,
|
||||
readonly=readonly,
|
||||
)
|
||||
|
||||
|
||||
if platform.system() == 'Linux':
|
||||
import os
|
||||
import errno
|
||||
from contextlib import asynccontextmanager as acm
|
||||
|
||||
import cffi
|
||||
import trio
|
||||
|
||||
ffi = cffi.FFI()
|
||||
|
||||
# Declare the C functions and types we plan to use.
|
||||
# - eventfd: for creating the event file descriptor
|
||||
# - write: for writing to the file descriptor
|
||||
# - read: for reading from the file descriptor
|
||||
# - close: for closing the file descriptor
|
||||
ffi.cdef(
|
||||
'''
|
||||
int eventfd(unsigned int initval, int flags);
|
||||
|
||||
ssize_t write(int fd, const void *buf, size_t count);
|
||||
ssize_t read(int fd, void *buf, size_t count);
|
||||
|
||||
int close(int fd);
|
||||
'''
|
||||
)
|
||||
|
||||
|
||||
# Open the default dynamic library (essentially 'libc' in most cases)
|
||||
C = ffi.dlopen(None)
|
||||
|
||||
# Constants from <sys/eventfd.h>, if needed.
|
||||
EFD_SEMAPHORE = 1
|
||||
EFD_CLOEXEC = 0o2000000
|
||||
EFD_NONBLOCK = 0o4000
|
||||
|
||||
|
||||
def open_eventfd(initval: int = 0, flags: int = 0) -> int:
|
||||
'''
|
||||
Open an eventfd with the given initial value and flags.
|
||||
Returns the file descriptor on success, otherwise raises OSError.
|
||||
|
||||
'''
|
||||
fd = C.eventfd(initval, flags)
|
||||
if fd < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'eventfd failed')
|
||||
return fd
|
||||
|
||||
def write_eventfd(fd: int, value: int) -> int:
|
||||
'''
|
||||
Write a 64-bit integer (uint64_t) to the eventfd's counter.
|
||||
|
||||
'''
|
||||
# Create a uint64_t* in C, store `value`
|
||||
data_ptr = ffi.new('uint64_t *', value)
|
||||
|
||||
# Call write(fd, data_ptr, 8)
|
||||
# We expect to write exactly 8 bytes (sizeof(uint64_t))
|
||||
ret = C.write(fd, data_ptr, 8)
|
||||
if ret < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'write to eventfd failed')
|
||||
return ret
|
||||
|
||||
def read_eventfd(fd: int) -> int:
|
||||
'''
|
||||
Read a 64-bit integer (uint64_t) from the eventfd, returning the value.
|
||||
Reading resets the counter to 0 (unless using EFD_SEMAPHORE).
|
||||
|
||||
'''
|
||||
# Allocate an 8-byte buffer in C for reading
|
||||
buf = ffi.new('char[]', 8)
|
||||
|
||||
ret = C.read(fd, buf, 8)
|
||||
if ret < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'read from eventfd failed')
|
||||
# Convert the 8 bytes we read into a Python integer
|
||||
data_bytes = ffi.unpack(buf, 8) # returns a Python bytes object of length 8
|
||||
value = int.from_bytes(data_bytes, byteorder='little', signed=False)
|
||||
return value
|
||||
|
||||
def close_eventfd(fd: int) -> int:
|
||||
'''
|
||||
Close the eventfd.
|
||||
|
||||
'''
|
||||
ret = C.close(fd)
|
||||
if ret < 0:
|
||||
raise OSError(errno.errorcode[ffi.errno], 'close failed')
|
||||
|
||||
|
||||
class EventFD:
|
||||
'''
|
||||
Use a previously opened eventfd(2), meant to be used in
|
||||
sub-actors after root actor opens the eventfds then passes
|
||||
them through pass_fds
|
||||
|
||||
'''
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fd: int,
|
||||
omode: str
|
||||
):
|
||||
self._fd: int = fd
|
||||
self._omode: str = omode
|
||||
self._fobj = None
|
||||
|
||||
@property
|
||||
def fd(self) -> int | None:
|
||||
return self._fd
|
||||
|
||||
def write(self, value: int) -> int:
|
||||
return write_eventfd(self._fd, value)
|
||||
|
||||
async def read(self) -> int:
|
||||
#TODO: how to handle signals?
|
||||
return await trio.to_thread.run_sync(read_eventfd, self._fd)
|
||||
|
||||
def open(self):
|
||||
self._fobj = os.fdopen(self._fd, self._omode)
|
||||
|
||||
def close(self):
|
||||
if self._fobj:
|
||||
self._fobj.close()
|
||||
|
||||
def __enter__(self):
|
||||
self.open()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.close()
|
||||
|
||||
|
||||
class RingBuffSender(trio.abc.SendStream):
|
||||
'''
|
||||
IPC Reliable Ring Buffer sender side implementation
|
||||
|
||||
`eventfd(2)` is used for wrap around sync, and also to signal
|
||||
writes to the reader.
|
||||
|
||||
TODO: if blocked on wrap around event wait it will not respond
|
||||
to signals, fix soon TM
|
||||
'''
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shm_key: str,
|
||||
write_eventfd: int,
|
||||
wrap_eventfd: int,
|
||||
start_ptr: int = 0,
|
||||
buf_size: int = 10 * 1024,
|
||||
clean_shm_on_exit: bool = True
|
||||
):
|
||||
self._shm = SharedMemory(
|
||||
name=shm_key,
|
||||
size=buf_size,
|
||||
create=True
|
||||
)
|
||||
self._write_event = EventFD(write_eventfd, 'w')
|
||||
self._wrap_event = EventFD(wrap_eventfd, 'r')
|
||||
self._ptr = start_ptr
|
||||
self.clean_shm_on_exit = clean_shm_on_exit
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
return self._shm.name
|
||||
|
||||
@property
|
||||
def size(self) -> int:
|
||||
return self._shm.size
|
||||
|
||||
@property
|
||||
def ptr(self) -> int:
|
||||
return self._ptr
|
||||
|
||||
@property
|
||||
def write_fd(self) -> int:
|
||||
return self._write_event.fd
|
||||
|
||||
@property
|
||||
def wrap_fd(self) -> int:
|
||||
return self._wrap_event.fd
|
||||
|
||||
async def send_all(self, data: bytes | bytearray | memoryview):
|
||||
# while data is larger than the remaining buf
|
||||
target_ptr = self.ptr + len(data)
|
||||
while target_ptr > self.size:
|
||||
# write all bytes that fit
|
||||
remaining = self.size - self.ptr
|
||||
self._shm.buf[self.ptr:] = data[:remaining]
|
||||
# signal write and wait for reader wrap around
|
||||
self._write_event.write(remaining)
|
||||
await self._wrap_event.read()
|
||||
|
||||
# wrap around and trim already written bytes
|
||||
self._ptr = 0
|
||||
data = data[remaining:]
|
||||
target_ptr = self._ptr + len(data)
|
||||
|
||||
# remaining data fits on buffer
|
||||
self._shm.buf[self.ptr:target_ptr] = data
|
||||
self._write_event.write(len(data))
|
||||
self._ptr = target_ptr
|
||||
|
||||
async def wait_send_all_might_not_block(self):
|
||||
raise NotImplementedError
|
||||
|
||||
async def aclose(self):
|
||||
self._write_event.close()
|
||||
self._wrap_event.close()
|
||||
if self.clean_shm_on_exit:
|
||||
self._shm.unlink()
|
||||
|
||||
else:
|
||||
self._shm.close()
|
||||
|
||||
async def __aenter__(self):
|
||||
self._write_event.open()
|
||||
self._wrap_event.open()
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
await self.aclose()
|
||||
|
||||
|
||||
class RingBuffReceiver(trio.abc.ReceiveStream):
|
||||
'''
|
||||
IPC Reliable Ring Buffer receiver side implementation
|
||||
|
||||
`eventfd(2)` is used for wrap around sync, and also to signal
|
||||
writes to the reader.
|
||||
|
||||
Unless eventfd(2) object is opened with EFD_NONBLOCK flag,
|
||||
calls to `receive_some` will block the signal handling,
|
||||
on the main thread, for now solution is using polling,
|
||||
working on a way to unblock GIL during read(2) to allow
|
||||
signal processing on the main thread.
|
||||
'''
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shm_key: str,
|
||||
write_eventfd: int,
|
||||
wrap_eventfd: int,
|
||||
start_ptr: int = 0,
|
||||
buf_size: int = 10 * 1024,
|
||||
flags: int = 0
|
||||
):
|
||||
self._shm = SharedMemory(
|
||||
name=shm_key,
|
||||
size=buf_size,
|
||||
create=False
|
||||
)
|
||||
self._write_event = EventFD(write_eventfd, 'w')
|
||||
self._wrap_event = EventFD(wrap_eventfd, 'r')
|
||||
self._ptr = start_ptr
|
||||
self._flags = flags
|
||||
|
||||
@property
|
||||
def key(self) -> str:
|
||||
return self._shm.name
|
||||
|
||||
@property
|
||||
def size(self) -> int:
|
||||
return self._shm.size
|
||||
|
||||
@property
|
||||
def ptr(self) -> int:
|
||||
return self._ptr
|
||||
|
||||
@property
|
||||
def write_fd(self) -> int:
|
||||
return self._write_event.fd
|
||||
|
||||
@property
|
||||
def wrap_fd(self) -> int:
|
||||
return self._wrap_event.fd
|
||||
|
||||
async def receive_some(
|
||||
self,
|
||||
max_bytes: int | None = None,
|
||||
nb_timeout: float = 0.1
|
||||
) -> memoryview:
|
||||
# if non blocking eventfd enabled, do polling
|
||||
# until next write, this allows signal handling
|
||||
if self._flags | EFD_NONBLOCK:
|
||||
delta = None
|
||||
while delta is None:
|
||||
try:
|
||||
delta = await self._write_event.read()
|
||||
|
||||
except OSError as e:
|
||||
if e.errno == 'EAGAIN':
|
||||
continue
|
||||
|
||||
raise e
|
||||
|
||||
else:
|
||||
delta = await self._write_event.read()
|
||||
|
||||
# fetch next segment and advance ptr
|
||||
next_ptr = self._ptr + delta
|
||||
segment = self._shm.buf[self._ptr:next_ptr]
|
||||
self._ptr = next_ptr
|
||||
|
||||
if self.ptr == self.size:
|
||||
# reached the end, signal wrap around
|
||||
self._ptr = 0
|
||||
self._wrap_event.write(1)
|
||||
|
||||
return segment
|
||||
|
||||
async def aclose(self):
|
||||
self._write_event.close()
|
||||
self._wrap_event.close()
|
||||
self._shm.close()
|
||||
|
||||
async def __aenter__(self):
|
||||
self._write_event.open()
|
||||
self._wrap_event.open()
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback):
|
||||
await self.aclose()
|
||||
|
|
Loading…
Reference in New Issue