Drop worker pool and add debug example
							parent
							
								
									4a512bc879
								
							
						
					
					
						commit
						71a35aadef
					
				
							
								
								
									
										166
									
								
								docs/README.rst
								
								
								
								
							
							
						
						
									
										166
									
								
								docs/README.rst
								
								
								
								
							| 
						 | 
				
			
			@ -71,12 +71,16 @@ Alluring Features
 | 
			
		|||
 | 
			
		||||
Example: self-destruct a process tree
 | 
			
		||||
-------------------------------------
 | 
			
		||||
``tractor`` protects you from zombies, no matter what.
 | 
			
		||||
 | 
			
		||||
.. code:: python
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
   Run with a process monitor from a terminal using:
 | 
			
		||||
   $TERM -e watch -n 0.1  "pstree -a $$" & python examples/parallelism/we_are_processes.py && kill $!
 | 
			
		||||
    Run with a process monitor from a terminal using::
 | 
			
		||||
 | 
			
		||||
        $TERM -e watch -n 0.1  "pstree -a $$" \
 | 
			
		||||
            & python examples/parallelism/we_are_processes.py \
 | 
			
		||||
            && kill $!
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    from multiprocessing import cpu_count
 | 
			
		||||
| 
						 | 
				
			
			@ -115,133 +119,81 @@ Example: self-destruct a process tree
 | 
			
		|||
 | 
			
		||||
The example you're probably after...
 | 
			
		||||
------------------------------------
 | 
			
		||||
It seems the initial query from most new users is "how do I make a worker
 | 
			
		||||
It seems the initial ask from most new users is "how do I make a worker
 | 
			
		||||
pool thing?".
 | 
			
		||||
 | 
			
		||||
``tractor`` is built to handle any SC process tree you can
 | 
			
		||||
imagine; the "worker pool" pattern is a trivial special case:
 | 
			
		||||
imagine; the "worker pool" pattern is a trivial special case.
 | 
			
		||||
 | 
			
		||||
We have a `full re-implementation <concurrent_actors_primes>`_ of the std-lib's
 | 
			
		||||
``concurrent.futures.ProcessPoolExecutor`` example for reference.
 | 
			
		||||
 | 
			
		||||
You can run it like so (from this dir) to see the process tree in
 | 
			
		||||
real time::
 | 
			
		||||
 | 
			
		||||
    $TERM -e watch -n 0.1  "pstree -a $$" \
 | 
			
		||||
        & python examples/parallelism/concurrent_actors_primes.py \
 | 
			
		||||
        && kill $!
 | 
			
		||||
 | 
			
		||||
This uses no extra threads, fancy semaphores or futures; all we need
 | 
			
		||||
is ``tractor``'s IPC!
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. _concurrent_actors_primes: https://github.com/goodboy/tractor/blob/readme_pump/examples/parallelism/concurrent_actors_primes.py
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
"Native" sub-process debugging
 | 
			
		||||
------------------------------
 | 
			
		||||
Using the magic of `pdb++`_ and some IPC tricks we've
 | 
			
		||||
been able to create a native feeling debugging experience for
 | 
			
		||||
any (sub)-process in your ``tractor`` tree.
 | 
			
		||||
 | 
			
		||||
.. code:: python
 | 
			
		||||
 | 
			
		||||
   """
 | 
			
		||||
   Demonstration of the prime number detector example from the
 | 
			
		||||
   ``concurrent.futures`` docs:
 | 
			
		||||
 | 
			
		||||
   https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor-example
 | 
			
		||||
 | 
			
		||||
   This uses no extra threads, fancy semaphores or futures; all we need 
 | 
			
		||||
   is ``tractor``'s channels.
 | 
			
		||||
 | 
			
		||||
   """
 | 
			
		||||
   from contextlib import asynccontextmanager
 | 
			
		||||
   from typing import List, Callable
 | 
			
		||||
   import itertools
 | 
			
		||||
   import math
 | 
			
		||||
   import time
 | 
			
		||||
    from os import getpid
 | 
			
		||||
 | 
			
		||||
    import tractor
 | 
			
		||||
    import trio
 | 
			
		||||
   from async_generator import aclosing
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
   PRIMES = [
 | 
			
		||||
       112272535095293,
 | 
			
		||||
       112582705942171,
 | 
			
		||||
       112272535095293,
 | 
			
		||||
       115280095190773,
 | 
			
		||||
       115797848077099,
 | 
			
		||||
       1099726899285419,
 | 
			
		||||
   ]
 | 
			
		||||
    async def breakpoint_forever():
 | 
			
		||||
        "Indefinitely re-enter debugger in child actor."
 | 
			
		||||
        while True:
 | 
			
		||||
            yield 'yo'
 | 
			
		||||
            await tractor.breakpoint()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
   def is_prime(n):
 | 
			
		||||
       if n < 2:
 | 
			
		||||
           return False
 | 
			
		||||
       if n == 2:
 | 
			
		||||
           return True
 | 
			
		||||
       if n % 2 == 0:
 | 
			
		||||
           return False
 | 
			
		||||
 | 
			
		||||
       sqrt_n = int(math.floor(math.sqrt(n)))
 | 
			
		||||
       for i in range(3, sqrt_n + 1, 2):
 | 
			
		||||
           if n % i == 0:
 | 
			
		||||
               return False
 | 
			
		||||
       return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
   @asynccontextmanager
 | 
			
		||||
   async def worker_pool(workers=4):
 | 
			
		||||
       """Though it's a trivial special case for ``tractor``, the well
 | 
			
		||||
       known "worker pool" seems to be the defacto "but, I want this
 | 
			
		||||
       process pattern!" for most parallelism pilgrims.
 | 
			
		||||
 | 
			
		||||
       Yes, the workers stay alive (and ready for work) until you close
 | 
			
		||||
       the context.
 | 
			
		||||
       """
 | 
			
		||||
       async with tractor.open_nursery() as tn:
 | 
			
		||||
 | 
			
		||||
           portals = []
 | 
			
		||||
           snd_chan, recv_chan = trio.open_memory_channel(len(PRIMES))
 | 
			
		||||
 | 
			
		||||
           for i in range(workers):
 | 
			
		||||
 | 
			
		||||
               # this starts a new sub-actor (process + trio runtime) and
 | 
			
		||||
               # stores it's "portal" for later use to "submit jobs" (ugh).
 | 
			
		||||
               portals.append(
 | 
			
		||||
                   await tn.start_actor(
 | 
			
		||||
                       f'worker_{i}',
 | 
			
		||||
                       enable_modules=[__name__],
 | 
			
		||||
                   )
 | 
			
		||||
               )
 | 
			
		||||
 | 
			
		||||
           async def _map(
 | 
			
		||||
               worker_func: Callable[[int], bool],
 | 
			
		||||
               sequence: List[int]
 | 
			
		||||
           ) -> List[bool]:
 | 
			
		||||
 | 
			
		||||
               # define an async (local) task to collect results from workers
 | 
			
		||||
               async def send_result(func, value, portal):
 | 
			
		||||
                   await snd_chan.send((value, await portal.run(func, n=value)))
 | 
			
		||||
 | 
			
		||||
               async with trio.open_nursery() as n:
 | 
			
		||||
 | 
			
		||||
                   for value, portal in zip(sequence, itertools.cycle(portals)):
 | 
			
		||||
                       n.start_soon(
 | 
			
		||||
                           send_result,
 | 
			
		||||
                           worker_func,
 | 
			
		||||
                           value,
 | 
			
		||||
                           portal
 | 
			
		||||
                       )
 | 
			
		||||
 | 
			
		||||
                   # deliver results as they arrive
 | 
			
		||||
                   for _ in range(len(sequence)):
 | 
			
		||||
                       yield await recv_chan.receive()
 | 
			
		||||
 | 
			
		||||
           # deliver the parallel "worker mapper" to user code
 | 
			
		||||
           yield _map
 | 
			
		||||
 | 
			
		||||
           # tear down all "workers" on pool close
 | 
			
		||||
           await tn.cancel()
 | 
			
		||||
    async def name_error():
 | 
			
		||||
        "Raise a ``NameError``"
 | 
			
		||||
        getattr(doggypants)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    async def main():
 | 
			
		||||
        """Test breakpoint in a streaming actor.
 | 
			
		||||
        """
 | 
			
		||||
        async with tractor.open_nursery(
 | 
			
		||||
            debug_mode=True,
 | 
			
		||||
            loglevel='error',
 | 
			
		||||
        ) as n:
 | 
			
		||||
 | 
			
		||||
       async with worker_pool() as actor_map:
 | 
			
		||||
            p0 = await n.start_actor('bp_forever', enable_modules=[__name__])
 | 
			
		||||
            p1 = await n.start_actor('name_error', enable_modules=[__name__])
 | 
			
		||||
 | 
			
		||||
           start = time.time()
 | 
			
		||||
 | 
			
		||||
           async with aclosing(actor_map(is_prime, PRIMES)) as results:
 | 
			
		||||
               async for number, prime in results:
 | 
			
		||||
 | 
			
		||||
                   print(f'{number} is prime: {prime}')
 | 
			
		||||
 | 
			
		||||
           print(f'processing took {time.time() - start} seconds')
 | 
			
		||||
            # retreive results
 | 
			
		||||
            stream = await p0.run(breakpoint_forever)
 | 
			
		||||
            await p1.run(name_error)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if __name__ == '__main__':
 | 
			
		||||
       start = time.time()
 | 
			
		||||
        trio.run(main)
 | 
			
		||||
       print(f'script took {time.time() - start} seconds')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
You can run this with::
 | 
			
		||||
 | 
			
		||||
    >>> python examples/debugging/multi_daemon_subactors.py
 | 
			
		||||
 | 
			
		||||
And, yes, there's a built-in crash handling mode B)
 | 
			
		||||
We're hoping to add a respawn-from-repl system soon!
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Feel like saying hi?
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue